"All the World's a Stage We Pass Through" R. Ayana

Showing posts with label arc globe sun. Show all posts
Showing posts with label arc globe sun. Show all posts

Saturday, 3 March 2012

Our Misunderstood Sun: The Electric Universe

Our Misunderstood Sun
The Electric Universe
]






“We stand on the verge of a vast cosmical discovery such as nothing hitherto imagined can compare with.”

—Sir John Herschel in 1850, upon the discovery of a link between magnetic storms on Earth and sunspots, to Michael Faraday, the vaunted experimentalist who was investigating the links between electricity and magnetism.


IMAGE

>> Sir John Herschel from 1846 The Year-book of Facts in Science and Art By John Timbs, London: Simpkin, Marshall, and Co.
[Click on all images to enlarge]


Incredibly, one hundred and sixty years later in the space age, Herschel’s “vast cosmical discovery such as nothing hitherto imagined can compare with,” of an Electric Universe, remains “on the verge.” Mistaken ideas have diverted scientists down the path of Ptolemy once more, adding endless epicycles to theory to save appearances. Meanwhile the object central to the problem is the same and in full view. It is our misunderstood Sun.

“The modern astrophysical concept that ascribes the sun’s energy to thermonuclear reactions deep in the solar interior is contradicted by nearly every observable aspect of the sun.” —Ralph E. Juergens (1980)


This year is going to be very busy publicizing the Electric Universe in England and Australia while receiving an award from a European Academy of Science for the work. So my articles will probably be sparser as I attend to other demands this year. Meanwhile, observational support for the Electric Universe arrives almost daily in the scientific press and my friends and colleagues at thunderbolts.info provide an up-to-date resource for those following this adventure.


Astronomers in the Dark

IMAGE


The Milky Way is a blazing spectacle
in the southern hemisphere sky. The stars remind me of a high school experiment in a darkened room; the radiant pinpoints of light appearing on the glass walls of an electric discharge tube as a near vacuum is reached inside the tube. It provides an exciting alternative perspective of the cosmos that is denied to almost everyone because it is ‘off the map’ of our education.

Nowhere in any astronomy textbook or magazine will you find mention of electric discharge in space. The concept of electrically powered stars is never considered. Plasma science was in its infancy and nuclear energy the new sensation when the mathematical physicist Arthur Eddington (1882-1944) wrote The Internal Constitution of the Stars (1926). His theoretical work in stellar physics seemed to solve the puzzles of powering the Sun for billions of years and how the Sun could remain so huge against the tendency to collapse due its own strong gravity.


IMAGE

“It is not enough to provide for the external radiation of the star. We must provide for the maintenance of the high internal temperature, without which the star would collapse.” —A. Eddington, The Internal Constitution of the stars.


But this constraint arises from the peculiar self-gravitating gas model Eddington chose and not the star. None of the myriad bizarre phenomena seen on and above the photosphere are explained by his purely theoretical solution to the problem. A balance between gravitational attraction and inflating thermal energy does not determine the size of the Sun. That is why star sizes vary by at least ±10 percent from the theoretical (see later). A photosphere is a brilliant electrical discharge phenomenon, which is little influenced by the physical size of the star hidden within.

“The problem of the source of a star’s energy will be considered; by a process of exhaustion we are driven to conclude that the only possible source of a star’s energy is subatomic; yet it must be confessed that the hypothesis shows little disposition to accommodate itself to the detailed requirements of observation, and a critic might count up a large number of ‘fatal’ objections.” —A. Eddington, The Internal Constitution of the Stars.

Perhaps because of Eddington’s influence, his intolerance of criticism and lack of an alternative theory, no “fatal objections” were raised. The development of Eddington’s theories was ruled more by mathematical aesthetics than empirics. Somehow an explosive nuclear energy source in the core had to be initiated and then tamed. The lethal radiation from the core needed to be contained and ‘cooled’ by collisions in a so-called radiative zone inside the Sun. After about 171,000 years, on average, the more benign energy is transferred to space by convection and subsequent radiation. There is no experimental confirmation of such a bizarre body composed principally of hydrogen, transferring energy internally by radiation, or of the hypothetical thermonuclear reactions at its core. Observations of the Sun are forced to fit the model and anomalies abound.


IMAGE

>> This simple diagram of the hypothetical standard solar model gives no inkling of the complexity of the phenomena seen in the photosphere and above. Image courtesy of Wikimedia Commons.


“We should expect on the basis of a straightforward calculation that the Sun would ‘end’ itself in a simple and rather prosaic way; that with increasing height above the photosphere the density of the solar material would decrease quite rapidly, until it became pretty well negligible only two or three kilometres up ... Instead, the atmosphere is a huge bloated envelope.” —F. Hoyle, Frontiers of Astronomy

“Essential to the received theory is the conviction that inside the sun is a steep temperature gradient, falling toward the photosphere, along which the internal energy flows outward. If we stack this internal temperature gradient against the observed temperature gradient in the solar atmosphere, which falls steeply inward, toward the photosphere, we find we have diagrammed a physical absurdity: The two gradients produce a trough at the photosphere, which implies that thermal energy should collect and become stuck there until it raises the temperature and eliminates the trough. That this does not occur seems to bother no one. But suppose we remove the hypothetical internal temperature gradient. What then? Why then we see that the sun’s bloated atmosphere and the “wrong-way” temperature gradient in that atmosphere point strongly to an external source of solar energy.” — Ralph E. Juergens, (1972)


IMAGE

>> This stunning image shows remarkable and mysterious details near the dark central region of a planet-sized sunspot in one of the sharpest views ever of the surface of the Sun. Along with features described as hairs and canals are dark cores visible within the bright filaments that extend into the sunspot, representing previously unknown and unexplored solar phenomena. The filaments' newly revealed dark cores are seen to be thousands of kilometers long but only about 100 kilometers wide. Image courtesy of the Swedish Solar Telescope.


"The amazing zoo of structures and dynamic phenomena on the Sun are not well understood in general, though they have been observed for a very long time." —Dan Kiselman, Royal Swedish Academy of Sciences,
Institute for Solar Physics


IMAGE

>> Ralph Juergens.


Simple observation shows the ordered granulation of the photosphere does not behave as expected of turbulent convection in hot hydrogen. The pioneer of the discharge model of the Sun, Ralph Juergens, wrote in 1979,

“The idea of turbulent convection delivering endless loads of energy upward from the unseen depths of the Sun conflicts not only with the ordered structure of the photosphere but also with the observable integrity of individual granules. The nodules of plasma appear, endure for some minutes, then fade away... Minnaert once published an analysis of photospheric behavior in terms of the Reynolds number. He found the critical value to lie near 103. The actual Reynolds number of the photosphere, as calculated from observable characteristics of the plasma, turned out to be in excess of 1011, which is to say, at least 100 million times greater than the critical value. Clearly, then, any convective motion in the photosphere should be violently turbulent and highly disordered, as Minnaert indeed pointed out. Practically in his next breath, however, Minnaert asserted that ‘The variable forms of the granules and their short lifetimes are evidence of nonstationary convection.’ Such an abrupt about-face is startling. Apparently Minnaert, himself, was disquieted; he immediately set out to minimize his non sequitur by suggesting ways and means for disregarding the classical theory of turbulence to make things come out right for the photosphere.” —Ralph E. Juergens

Sunspots are dark instead of bright, which is prima facie evidence that heat is not trying to escape from within. And the Sun’s corona is millions of degrees hotter than the photosphere. These simple observations point to the energy source of the Sun being external. Add to this the dominant influence of magnetic fields on the Sun’s external behavior and we arrive at the necessity for an electrical energy supply. It is the “subtle radiation traversing space which the star picks up,” and which Eddington immediately dismissed because his gravitational model required energy to be generated at the core of the star to bloat it to the observed size.

“In seeking a source of energy other than contraction the first question is whether the energy to be radiated in future is now hidden in the star or whether it is being picked up continuously from outside. Suggestions have been made that the impact of meteoric matter provides the heat, or that there is some subtle radiation traversing space which the star picks up. Strong objection may be urged against these hypotheses individually; but it is unnecessary to consider them in detail because they have arisen through a misunderstanding of the nature of the problem. No source of energy is of any avail unless it liberates energy in the deep interior of the star.” —A. Eddington, The Internal Constitution of the Stars.

Eddington’s legacy to stellar physics has been a return to Ptolemaic science where endless ‘epicycles’ are added to theory in an attempt to save appearances.

It is now almost a century since the thermonuclear theory of stars was formulated. It is an urban myth. Science has many urban myths that have a life of their own. Such myths are difficult to dispel when eminent scientists promote them, educators parrot them, the media dramatizes them, and students are discouraged from dissent.

“It is a strange thought, but I believe a correct one, that twenty or thirty pages of ideas and information would be capable of turning the present-day world upside down, or even destroying it. I have often tried to conceive of what those pages might contain, but of course I am a prisoner of the present-day world, just as all of you are. We cannot think outside the particular patterns that our brains are conditioned to, or, to be more accurate, we can only think a very little way outside, and then only if we are very original.” —Fred Hoyle, Of Men and Galaxies

Our mental ‘map’ of the world is strongly influenced by the things we experience in our early years. Our formal education tends to set the patterns that we follow for the rest of our lives. But not so for everyone. There are always those adventurous few who venture off the beaten path. For them, losing sight of landmarks can be exhilarating, but the difficulty of relating discoveries upon return can be high. Not least is the problem of dismissal by the “specialized gate keepers” of knowledge. Excessive institutionalisation may have made acceptance of new paradigms more difficult now than in Galileo’s time.

“We can only discuss or make intellectual advances by passing through the existing body of learning. This is such an enormous task, made even more enormous by the multitudes of specialized gate keepers, that no one can produce integrated thought.” “...we are faced by a crisis in language and communication. This crisis is being accentuated, not eased, by the Universities.” —J R Saul, The Unconscious Civilization

Having a trailblazer’s map, like that provided by Ralph Juergens, is like having access to Google Earth while scientists puzzle over medieval maps with their rubric at the borders, “ beyond there be dragons,” and where Terra Incognita is huge and “dark.” So it is the belief that the unknown depths of space are filled with “dark matter” and “dark energy” and all-devouring dragons or black holes. Modern astronomy is completely in the dark.

The standard theory of stellar interiors is the result of bad timing. It is an historical accident that is long overdue for investigation. But the history of ideas and scientific debates are rarely put in context for students. The losers and their arguments are minimized and forgotten. However, debates are rarely won on scientific grounds. Politics and personalities, then as now, play a major role. So the contests should be revisited occasionally to check the assumptions that were made. It should be compulsory before indulging in post-modern metaphysics; the idea that knowledge is constructed, not discovered. But it is rare today to see a scientific paper cite others more than a few years old. Notably, those few scholars who trouble to delve into historical scientific debates find the ‘truths’ they have been taught not so assured after all. It is often they who question the consensus view and find publication difficult as a result. The historical perspective required for healthy skepticism is lacking in science today.

When we assign names to theories — Newton’s law of gravity, Einstein’s theories of relativity— we impede progress by attaching ideas to celebrities. To question these theories is seen as an attack on the celebrity, with all of the attendant visceral responses to such an ‘intrusion.’ But the history of science shows that it is often an intruder’s fresh ideas that eventually trigger the biggest advances. Dr. Bernard Newgrosh calls such intruders “eminent outsiders.” His favorite example is none other than the astronomer William Herschel (1738-1822), “who was born in Hanover, joined a regimental band at 14, went to England at 21 and worked as a musician and composer. He also instructed himself in mathematics and astronomy and constructing his own reflecting telescopes.” Another was Michael Faraday (1791-1867), who “was born in Surrey, apprenticed to a book-binder and was largely self-educated.”

Newgrosh notes, “how easy it used to be even for entirely self-taught outsiders and part-time amateurs to break into mainstream academia... Not only does this not happen in the modern world, where academia is distrustful of outsiders and its publications are by and large closed to non-members of the academic elite but the general perception is that if you have no academic qualification you cannot be recognized as having any expertise.” The Royal Society is a club that would reject a Herschel or Faraday today.

The Royal Society celebrates its 350th anniversary this year. The book, Seeing Further: The Story of Science and the Royal Society, edited by Bill Bryson, is being released to honor the event. Robin McKie, science editor of the Guardian, in his review writes, “The book is low, to the point of non-appearance, in human interest and is just a little bit too smug for its own good. Then there is the creeping feeling of worthiness that slowly envelops the reader, as you encounter, again and again, noble minds revealing the wonders of nature. It is like reading a piece of upmarket vanity publishing. I wanted to like it more but couldn't.”

Human interest comes chiefly from reading about the clash of ideas and personalities in their proper historical context. This kind of adulatory book about scientists written by the usual publicity hounds is not the way to advance science. It reinforces the status quo and discourages dissent. It is boring and discourages student participation in science, as universities report with growing concern. To stop the rot requires that we challenge students with the idea that “a vast cosmical discovery” awaits the adventurous. And all of the arts and sciences will be profoundly influenced. What better motivation could educators offer students?

However, bringing about a fundamental scientific paradigm shift is arguably more difficult today than at any time in history. And nothing could be more difficult than to wring an acknowledgement that our cherished story of how the Sun and stars work is wrong, despite the disquiet expressed by experienced astrophysicists at their meetings. The following quotes are from a recent colloquium by a well-known astrophysicist and expert on stellar interiors:

“If we understand what is going on in the Sun, we can turn and look outwards to every other star and transfer that knowledge to those other stars.”
“The standard solar model predicts no motion in the photosphere. The solar surface is a mess.” “There is a gap in our understanding of stellar evolution. Some of the things we’re finding are not what we expected.” “The radii of some stars are out by ±10 percent according to our models.”


Rapid change needs a metaphorical bushfire to sweep through the ‘old growth’ on our campuses. But what ‘firestorm’ could result from misunderstandings about the Sun? The contrived crisis of anthropogenic global warming (AGW) may be a timely example. But AGW tends to be an unfalsifiable hypothesis in the short term. If you are buried in snow, the argument goes, it is AGW that is causing the “extreme weather.” We may have to wait for years before it becomes evident that the climate changes regardless of what we humans do. The cosmological fact is that the source of warmth, our Sun, is a variable star. This was termed an “unorthodox idea” as recently as last week on the Solar Dynamic Observatory (SDO) website:

For some years now, an unorthodox idea has been gaining favor among astronomers. It contradicts old teachings and unsettles thoughtful observers, especially climatologists. “The sun,” explains Lika Guhathakurta of NASA headquarters in Washington DC, “is a variable star.”

However, with the short attention span of the media, science will probably ride out the inevitable failed prediction. The jungle of institutionalized and government funded science is more fire-proof than the major US banks in the worst of the global financial crisis. And the media is sycophantic toward academics to the point of being irrelevant.

“I would assert that there are probably as many as twenty really major discoveries in physics which are waiting around for somebody to pick up and which involve no major facility. I would suspect that to have a major facility would be an active handicap, since it is usually the case that the facility dictates the scientist’s thoughts rather than the other way about.” —Fred Hoyle, Of Men and Galaxies



Cosmic Electric Lights


The electrical model of the Sun discards the problematic
birth of stars by gravitational accretion. Stars are formed following Marklund convection of charged particles in dusty plasma toward the axis of galactic Birkeland current filaments.


IMAGE

>> General form of the magnetic field line pattern in a force-free axisymmetric filamentary structure. The filament is transparent so the temperature decreases toward the axis due to a preferential cooling of the densest regions. So the ionized components of the plasma are convected inwards with a velocity V across a temperature gradient, delta T. Diagram adapted from Marklund, G. T., "Plasma convection in force-free magnetic fields as a mechanism for chemical separation in cosmical plasma", Nature, vol. 277, Feb. 1, 1979, p. 370, 371.


It is a very efficient mechanism which results in scavenging matter with a long-range 1/r force. Marklund explains, “In my paper in Nature the plasma convects radially inwards, with the normal E x B/B2 velocity, towards the center of a cylindrical flux tube. During this convection inwards, the different chemical constituents of the plasma, each having its specific ionization potential, enter into a progressively cooler region. The plasma constituents will recombine and become neutral, and thus no longer under the influence of the electromagnetic forcing. The ionization potentials will thus determine where the different species will be deposited, or stopped in their motion." Stars formed in this way have an outer envelope of helium and hydrogen. Working inwards, hydrogen, oxygen and nitrogen will form the atmospheric middle layers, and iron, silicon and magnesium will make up the core, which is cool. There is no thermonuclear engine in stars!


IMAGE

>> This infrared image of the Orion nebula shows the new (red) stars forming along twisting current filaments in a dusty plasma. Credit: ESO/J. Emerson/VISTA & R. Gendler. Acknowledgment: Cambridge Astronomical Survey Unit. [Click to enlarge]


Dr. Carl A. Rouse is called “a quiet maverick of an astrophysicist whose ‘nonstandard’ models of the interior of the Sun have been provoking the solar physics community for nearly 40 years.” He found from his study of pulsating variable stars that there is something wrong with the standard model of the interior of stars. Using the usual assumptions he could not match the observed mass, luminosity and radius of the Sun! He found that his model worked only by assuming the Sun has a core of heavy elements. What is more, he can reproduce the observed helioseismic oscillations. Rouse’s work deserves more attention because it fits the plasma cosmology story of star formation in a Z-pinch, with the heavy elements concentrated at the core. It also matches the Electric Universe model of electric stars, where the solar neutrino deficit is no longer “one of the greatest unsolved problems of solar physics” because sunshine is a spherical electric discharge phenomenon powered by the galaxy. It explains simply why the solar irradiance exhibits modulation identical to that of neutrinos. Nuclear reactions occur on the Sun like they do in atom smashers on Earth, by concentrating electrical energy onto a target.



IMAGE

>> This diagram is from The Sun e-book. The simplistic estimate of the size of the body of the Sun is intended to show that the atmosphere of a star can contribute a substantial amount to its apparent size, given by the thin yellow photosphere.


In September last year the National Solar Observatory featured a news item, “Solar Polar Vortex?” “Typically, the differential [solar] rotation shows speeds of rotation of about 2000 m/s near the Equator and about 1000 m/s near latitudes of 80 degrees. The differential rotation has undergone changes over surprisingly short periods of time. In short, the central latitudes have been somewhat constant, whereas the regions near the Equator and the poles have changed substantially in a semi-periodic fashion, which appears to be correlated with the solar magnetic cycle... The increases in spin appear to be short lived but occur during times of high magnetic activity. In a few cases, dramatic increases in spin approaching 400 m/s have occurred.”

That is dramatic! So is the fact that this behavior of the Sun is not a surprise in the electrical model. Alfvén’s circuit model of the Sun shows the current flow concentrated at the poles and the equator. The changes in the solar magnetic field are caused by changes in the electric current flowing through the Sun. The rapid changes in speed of the polar vortex are simply electrical atmospheric effects like those seen on the gas giant planets. In fact, since all polar atmospheric vortexes are driven by rotating Birkeland currents, similar odd features seen at Saturn and Venus (polygon, hot spot vortex) should someday be detected on the Sun.

The renowned solar astrophysicist, Eugene N. Parker, wrote in his Special Historical Review article in Solar Physics, “..the pedestrian Sun exhibits a variety of phenomena that defy contemporary theoretical understanding. We need look no farther than the sunspot, or the intensely filamentary structure of the photospheric magnetic field, or the spicules, or the origin of the small magnetic bipoles that continually emerge in the supergranules, or the heat source that maintains the expanding gas in the coronal hole, or the effective magnetic diffusion that is so essential for understanding the solar dynamo, or the peculiar internal rotation inferred from helioseismology, or the variation of solar brightness with the level of solar activity, to name a few of the more obvious mysterious macrophysical phenomena exhibited by the Sun.”

Such frank admissions should be a warning that scientists don’t understand the Sun or stars at all. All of the problems can be put down to an invalid model. An outstanding clue is the “intensely filamentary structure of the photospheric magnetic field,” which is diagnostic of electric Birkeland currents impinging on the photosphere. Another clue is the even spacing of those magnetic filaments at the photosphere (current filaments impinging on an anode are spaced evenly apart). And the attraction between sunspots with the same magnetic polarity seals the argument (parallel electric currents attract).

A good measure of a theory is its ability to predict the outcome of new observations or explain them without introducing additional ad hoc concepts. Stellar theory fails this test miserably. For example, most stars are in binary or multiple systems (gravitational theory has problems with this too). So it is vital that stellar theory works for them. However, the theories of mass transfer between binary stars and their resulting evolution give the wrong element abundances, even after all of the adjustable parameters are pushed to their limits. Our expert again:

“Something is clearly wrong.” “Some of the things we’re finding are not what we expected. We’ve all been carefully taught in the wrong way.” “We need theories that are not so infinitely flexible.”

Just so. Complexity does, however, provide security of tenure. It allows researchers to waste their talents and our money endlessly playing with computer models to approximate surprising new observations. The work is futile because it is not designed to make predictions whose falsification could end the game. There is no thought of any alternative to the thermonuclear model of stars. It is a self-perpetuating pastime.
“Even good scientists do GIGO (garbage in – garbage out). Astrophysicists have a long history of plugging in the answer they want to see.” The “infinitely flexible” astrophysical theories are impossible to falsify. Cosmology at present is not real science.

Theoretical astrophysicists have missed something important in their education. They are taught a theoretical form of plasma physics involving frozen-in magnetic fields that was warned against by Hannes Alfvén as not applying in space plasma. They do not attend plasma science conferences comparing real plasma lab experiments with observations of cosmic plasma. They seem oblivious that there is an electrical engineering (IEEE) discipline of plasma cosmology. Like the stars, plasma cosmology has a bright future.

Countless billions of dollars have been wasted based on the thermonuclear model of stars. For example, trying to generate electricity from thermonuclear fusion, “just like the Sun.” The thought that solar scientists have it completely backwards has not troubled anyone’s imagination. The little fusion power that has been generated on Earth has required phenomenal electric power input, “just like the Sun!” The Sun and all stars consume electrical energy to produce their heat and light and cause some thermonuclear fusion in their atmospheres. The heavy elements formed there are seen in stellar spectra. It explains why the expected solar neutrino count is low and anti-correlated with sunspot numbers. It explains why many stars are considered “chemically peculiar.” Get the physics right first and the mathematics will follow.

It is no surprise that ‘journeyman science’ and its spin-off technology advances more rapidly in the age of the Internet than in the past. But it comes as a shock that fundamental science is moribund. That doesn’t stop some scientists with more hubris than commonsense to declare a ‘theory of everything’ is within reach. Typical of this misguided age is the notion that such a theory will be found in a concise statement printable in arcane mathematical runes on a T-shirt. It reveals that perhaps the greatest problem for physics is the cult of celebrity attached to mathematicians and their consequent dominance of the field. Perhaps the worrying decline in interest in physics can be put down to the overemphasis on mathematical theory. The clash of philosophical concepts is far more intriguing and ultimately useful. Mathematics should be the cart behind the horse of physics, not the reverse. Mathematics describes actions, it cannot explain them. Mathematics is not physics!

“I am acutely aware of the fact that the marriage between mathematics and physics, which was so enormously fruitful in past centuries, has recently ended in divorce.” —Freeman Dyson

As the astrophysicist said, “If we understand what is going on in the Sun, we can turn and look outwards to every other star and transfer that knowledge to those other stars.” But we have not even begun to understand the Sun or the universe we live in. We must wait to see who the real scientists are—those who respond wisely to the distress of encountering fundamental disagreement.

“Science is one thing, wisdom is another. Science is an edged tool, with which men play like children, and cut their own fingers.” —Sir Arthur Eddington

by Wal Thornhill







To read more about the electric universe see http://nexusilluminati.blogspot.com/label/electric sun




Please Help Keep This Unique Site Online
Donate any amount and receive at least one New Illuminati eBook!






For further enlightening information enter a word or phrase into the search box @  New Illuminati or click on any label/tag at the bottom of the pagehttp://nexusilluminati.blogspot.com


And see

The Her(m)etic Hermit - http://hermetic.blog.com





This material is published under Creative Commons Fair Use Copyright (unless an individual item is declared otherwise by copyright holder) – reproduction for non-profit use is permitted & encouraged, if you give attribution to the work & author - and please include a (preferably active) link to the original along with this notice. Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution! If you like what you see, please send a tiny donation or leave a comment – and thanks for reading this far…

From the New Illuminati – http://nexusilluminati.blogspot.com


Saturday, 24 January 2009

NASA’s Dim View of Stars: Electric Universe

NASA’s Dim View of Stars
Electric Universe

"..astronomers can tell the temperature of the central regions of the Sun and of many other stars within a few percentage points and be quite sure about the figures they quote."  - A Star Called the Sun, George Gamow.


 IMAGE

The Cone Nebula is a column of dark dust, six light-years long, near some newly formed hot blue stars. The edge of the column, especially the tip, is bright with red light from ionized hydrogen. This nebula and the cluster that illuminates it are about 2600 light-years away in Monoceros. Credit: Michael Gariepy/Adam Block/NOAO/AURA/NSF. 
 
The cone nebula shows a star at the top of a conical-shaped dusty plasma, festooned with lights. The image strikes an instinctive chord—the mythical celestial world mountain around which the stars revolve; the cosmic (Christmas) tree with lights; fireworks displays against a night sky. Why? Because it reflects back to us our own prehistory when a strange drama was taking place in the sky. 

The Earth was enveloped in a towering polar auroral plasma, flashing with light and with bright celestial bodies at its distant focus. How do we know? Prehistoric mankind around the globe chiselled representations of what they saw into solid rock. The effort required was prodigious, the motivation extraordinary. Modern astronomy seems unable to address the issue, offering instead a comfortable myth of cosmic stability.

Twentieth century technologies have enabled astronomers to see the stars and planets ever more clearly, but their perceptions are clouded by centuries-old beliefs about celestial harmony; that the heat and light of stars is due to some kind of internal fire; that we understand gravity sufficiently to declare that it obeys a universal law and alone governs cosmic evolution. These perceptions have become dogma and dogma hinders progress. So it is not surprising that a growing number of critics see gravitational cosmology of the “Big Bang” as sterile and irrelevant to any real understanding of our place and history in the universe. The fact that it has nothing to say about life itself—the deepest mystery of the universe—is just one of countless signs that the present field of view is too limited.


For the moment I want to feature two reports in December that show astronomers do not understand stars. The view of stars as ‘fires in the sky’ was understandable when chemical fires were the only source of light that we knew & the only question we asked of stars was ‘how do they shine? But that view failed when we realized that stars had to burn steadily for aeons. The discovery of nuclear energy offered an answer to this new question without having to re-evaluate the accumulation of other assumptions about stars.


The thermonuclear assumption was never proved, and observations that contradicted it were never crucial enough to compel astronomers to doubt it. It came full circle and led to a futile decades-long effort to mimic the conjectured process to provide power on the Earth. All the while, a clue to a better answer stared the experimenters and theoreticians in the face: they were using electricity to trigger thermonuclear reactions; maybe the Sun was doing that, too.


We use electricity as a convenient means of lighting and heating that doesn’t require the power to be generated on site. We’ve discovered that thin transmission lines can carry great amounts of power over long distances from generator to light bulb. Nature is parsimonious in achieving its ends; why wouldn’t stars get power from natural transmission lines? The satisfying answer is that they do. Radio astronomers can trace the telltale magnetic fields in deep space. The magnetic fields mark filamentary cosmic ‘transmission lines’ carrying electrical power between galaxies and stars.
 

 
IMAGE
 Planetary nebula M2-9. The complex Z-pinch hourglass shape of the external circuitry of a star becomes visible in a planetary nebula where the galactic power is high enough or the plasma is dusty. Gravitational models of stars fail to explain the fine detail of planetary nebulae.

NASA’s Dim View of Stars
The latest report from NASA is a fitting end to The Year of The Electric Universe. It demonstrates that the electric model of stars envisaged the latest observations while NASA researchers again mask their assumptions by stating them as facts. Ironically, the report refers to some stars as “low-energy fluorescent light bulbs.”

As usual, all the science reporting agencies repeat NASA’s words without critical comment. Mainstream media rarely do investigative science journalism. The NASA report follows, along with my comments.

 

 Astronomers Find the Two Dimmest Stellar Bulbs


IMAGE
 This artist's concept shows the dimmest star-like bodies currently known -- twin brown dwarfs referred to as 2M 0939. The twins, which are about the same size, are drawn as if they were viewed close to one of the bodies. Picture credit: NASA/JPL-Caltech.
 
It's a tie! The new record-holder for dimmest known star-like object in the universe goes to twin "failed" stars, or brown dwarfs, each of which shines feebly with only one millionth the light of our sun.


Comment: As we shall see, the notion of “twin failed stars” is a theoretical assumption and not a fact!


In an Electric Universe there is no such thing as a “failed” star. They have no thermonuclear “engine” to fail. All bodies in the galaxy receive external electrical energy from the galactic circuit. Radio astronomers (for the most part unwittingly) trace the circuit by mapping the magnetic fields of galaxies and stars, which fields are generated by the electric current flowing in the circuit. The circuits are unrecognized due to the mistaken conviction that magnetic fields can be ‘frozen in’ to plasma. The ‘father’ of plasma physics, Hannes Alfvén, appealed against this mistaken notion in his Nobel Prize acceptance speech in 1970. But to give up this false belief would require discarding decades of theoretical work and reputations built upon it.


The report continues:

Previously, astronomers thought the pair of dim bulbs was just one typical, faint brown dwarf with no record-smashing titles. But when NASA's Spitzer Space Telescope observed the brown dwarf with its heat-seeking infrared vision, it was able to accurately measure the object's extreme faintness and low temperature for the first time. What's more, the Spitzer data revealed the brown dwarf is, in fact, twins.


"Both of these objects are the first to break the barrier of one millionth the total light-emitting power of the sun," said Adam Burgasser of the Massachusetts Institute of Technology, Cambridge. Burgasser is lead author of a new paper about the discovery appearing in the Astrophysical Journal Letters.


Brown dwarfs are the misfits of the cosmos. They are compact balls of gas floating freely in space, but they are too cool and lightweight to be stars, and too warm and massive to be planets. The name "brown dwarf" comes from the fact that these small, star-like bodies change color over time as they cool, and thus have no definitive color. In reality, most brown dwarfs would appear reddish if they could be seen with the naked eye. Their feeble light output also means they are hard to find. The first brown dwarf wasn't discovered until 1995. While hundreds are known today, astronomers say there are many more in space still waiting to be discovered.


Comment: All stars are an electrical phenomenon. There are no “misfits” in an Electric Universe. All of the assumptions being heaped upon the meagre photons received from deep space merely serve, as usual, to force fit the data to the standard model of stars. The very name, brown “dwarf,” assumes that these stars are “compact balls of gas floating freely in space.”


In stark comparison, the electric model describes them as “huge” because the light from a star is a plasma discharge phenomenon with only a loose relationship to the physical size of the star and a strong dependence on the electrical environment. Brown dwarfs do not simply cool down over time and wink out. They are externally powered electric lights.


In December 1999 I wrote, “The apparent size and color of an electric star is an electrical phenomenon. If Jupiter's magnetosphere were lit up it would appear the size of the full Moon… The light of a red star is due to the distended anode glow of an electrically low-stressed star… Red Giants are a more visible and scaled-up example of what an L-type Brown Dwarf star might look like close-up.”


The report continues:
 
Astronomers recently used Spitzer's ultrasensitive infrared vision to learn more about the object, which was still thought to be a solo brown dwarf. These data revealed a warm atmospheric temperature of 565 to 635 Kelvin (560 to 680 degrees Fahrenheit). While this is hundreds of degrees hotter than Jupiter, it's still downright cold as far as stars go. In fact, it is one of the coldest star-like bodies measured so far.


To calculate the object's brightness, the researchers had to first determine its distance from Earth. After three years of precise measurements with the Anglo-Australian Observatory in Australia, they concluded that the star is the fifth-closest known brown dwarf to us, 17 light-years away toward the constellation Antlia. This distance, together with Spitzer's measurements, told the astronomers the object was both cool and extremely dim.

But something was puzzling. The brightness of the object was twice what would be expected for a brown dwarf with its particular temperature. The solution? The object must have twice the surface area. In other words, it's twins, with each body shining only half as bright, and each with a mass of 30 to 40 times that of Jupiter. Both bodies are one million times fainter than the sun in total light, and at least one billion times fainter in visible light alone.


"These brown dwarfs are the lowest power stellar light bulbs in the sky that we know of," said Burgasser. "And like low-energy fluorescent light bulbs, they emit most of their light in a narrow range of wavelengths, in this case in the infrared."


Comment: Burgasser’s description of brown dwarfs as “low-energy fluorescent light bulbs” is the closest he comes to the truth. Like fluorescent lights, brown dwarfs require electricity! And the solution to the problem is simple—a single red dwarf with a distended red anode-glow can provide the extra brightness without postulating an unlikely twin.


The report continues:
 
According to the authors, there are even dimmer brown dwarfs scattered throughout the universe, most too faint to see with current sky surveys. NASA's upcoming Wide-Field Infrared Survey Explorer mission will scan the entire sky at infrared wavelengths, and is expected to uncover hundreds of these inconspicuous characters.


"The holy grail in the study of brown dwarfs is to find out how low you can go in terms of temperature, mass and brightness," said Davy Kirkpatrick, a co-author of the paper at NASA's Infrared Processing and Analysis Center at the California Institute of Technology, Pasadena. "This will tell us more about how brown dwarfs form and evolve."

Comment: In an Electric Universe, stars do not evolve. The notion of stellar evolution and the age of stars is an invention of the standard thermonuclear model of stars. And for so long as scientists cling to an unworkable theory of stellar formation by gravitational accretion, new findings will serve only to add to the confusion.


I predict that further discoveries by the Wide-Field Infrared Survey Explorer in this category will require the same ad hoc assumption that the radiant surface area, based on standard theory, must be accommodated by multiple star systems. The odds against finding so many multiple systems will become astronomical.

 


 Success for the Electrical Model of White Dwarf Stars

IMAGE
The Hertzsprung-Russell diagram is a plot of observations which must be explained by the chosen model of stars. The electrical model of stars reverses the direction of the x-axis to show the direct relationship between an increase in current density at the surface of a star and the higher temperature of that star, reflected by its change in color from red hot to white hot to blue hot.


 
 
The main sequence is the backbone of the observations but there are sharp discontinuities between the main sequence, the giant stars and white dwarfs. In the standard thermonuclear model of stars, the explanations for these discontinuities are beset by many observational discrepancies and ad hoc patches.

In the electric star model such discontinuities are a natural feature of a plasma discharge. Main sequence stars operate like arc lights in a cinema projector. The plasma discharge at their photospheres is in arc mode. The main sequence is a direct result of increasing the current density at the surface of a star.


The white dwarfs operate more like fluorescent lights, where a fainter coronal glow-mode discharge provides the light. If you can imagine the Sun’s bright photosphere being replaced by faint white coronal light, you have the picture. White ‘dwarfs’ are not dwarfs at all. They are faint, not because they are small but because they produce their light in a different mode of plasma discharge from stars like the Sun. The current density scale for white dwarfs is different to that of the main sequence and this is why they are scattered along a lower-luminosity sequence.


In the case of giant stars, the star’s ‘surface’ is bloated like the glow of a neon light as the star seeks to satisfy its current requirements. The red light comes from a low current density at the large diameters of the (virtual) anode of these stars.


The stellar thermonuclear evolutionary story is that a star of intermediate mass (1-8 solar masses) terminates its life as an Earth-sized white dwarf after the exhaustion of its nuclear fuel. During the transition from a nuclear-burning star to the white dwarf stage, the star collapses to about one fiftieth of the solar radius and becomes very hot. Many such objects with surface temperatures around 100,000 Kelvin (K) are known. Theories of stellar evolution predict that these stars can be much hotter. However, the probability of catching them in such an extremely hot state is low, because this phase is short-lived.


An article was published on December 12 this year in Astronomy & Astrophysics Letters which claims to have discovered one of these white dwarfs, “one of the hottest stars ever known with a temperature of 200,000 K at its surface.” The temperature is deduced from the emission from nine-fold ionized calcium atoms thought to be in the star’s photosphere. It is the highest ionization level of a chemical element ever discovered in a photospheric stellar spectrum.


The stellar atmosphere modelling of a white dwarf based on thermodynamic equilibrium will give erroneous conclusions because charged particles in an electric field will be dethermalized (their random motion reduced while their kinetic energy increases). So it easy for a white dwarf to multiply ionize calcium atoms because the electrical energy required is equivalent to a mere 211 electron volts and not random thermal energy equal to a temperature of 200,000 to 300,000 K. Using thermal (mechanical) energy is the most difficult and unlikely way of explaining the data.


The white dwarf also challenges the standard stellar evolution concepts because it has a chemical surface composition rich in calcium and helium that is not predicted by stellar evolution models. A paper in the Astrophysical Journal of February 2005 shows the surprise and confusion created by this star. As usual, mechanical energy in the form of a supposed “shocked wind” is proposed as the origin of weak X-ray emission at 1 keV. And despite the almost infinite number of “knobs” available to twiddle on the standard model, a match with observations has not been reached.





The obstacle to an understanding of white dwarfs comes from using heat (mechanical energy) from within a star to explain highly energetic phenomena outside the star. It is precisely the difficulty encountered with the Sun and its phenomenally hot corona. The conceptual hurdle is exemplified by the paradigm set out in the introduction to the above paper: “The hot 106-107 K coronae on the Sun and other late-type stars are  


believed to be sustained by mechanical energy in their outer convection zones, which is dissipated at the surface through the medium of magnetic fields generated and amplified by differential rotation and convection in the interior.” [Emphasis added].

In other words, our present understanding of the Sun and therefore most other stars is based on this simple belief that to this day has not been verified. In this circumstance it would be scientifically responsible to question that belief when new data fails to satisfy predictions. As Eddington, the theoretician who gave us the standard model of stars, wrote of white dwarfs when first discovered, “Strange objects, which persist in showing a type of spectrum entirely out of keeping with their luminosity, may ultimately teach us more than a host which radiates according to rule.” But beliefs are very difficult to shift.


In July this year I wrote, “A white dwarf is a star that is under low electrical stress so that bright ‘anode tufting’ is not required. The star appears extremely hot, white and under-luminous because it is equivalent to having the faint white corona discharge of the Sun reach down to the star’s atmosphere. As usual, a thin plasma sheath will be formed between the plasma of the star and the plasma of space. The electric field across the plasma sheath is capable of accelerating electrons to generate X-rays when they hit atoms in the atmosphere. And the power dissipated is capable of raising the temperature of a thin plasma layer to tens of thousands of degrees.”


Of course, this model will need to be reviewed in the light of new data. But at least it is a new, quite different model that easily meets the basic observational fact of high-energy phenomena outside a star. The strong magnetic fields of some white dwarfs are diagnostic of external electric currents. The spectral line broadening indicates the presence of a strong electric field in the light-emitting region. The electrical energy focussed on the white dwarf is dissipated in an extensive, cool corona instead of a hot, arc-tufted photosphere.


So it is significant that the spectrum of the white dwarf in the cited paper was interpreted as “evidence that the X-rays originated not from deeper atmospheric layers but from a coronal plasma encircling the star.” The white dwarf “became the first white dwarf thought to have a corona, albeit a cool one.” The weak X-ray emission is attributed, in ad hoc fashion, to “a shocked wind.” It’s like a dentist using a jet engine to X-ray your teeth.


The presence of anomalies in the star’s spectrum, both in the elements present and their state of ionization, is more accurately explained by the electrical model of stars, which have a cool core of heavy elements. The authors note, “a coronal model requires a total luminosity more than two orders of magnitude larger than that of the star itself.” An electric white ‘dwarf’ emits light from both the corona and the thin, brighter plasma sheath that forms its photosphere.


An electric white dwarf is a far simpler model than the “collapsed degenerate stellar corpse” model. The star is not “dying.” It has not evolved from another type of star. It is not an impossible object—a Sun squeezed to twice the diameter of the Earth. Stars cannot suffer gravitational collapse to a theoretical form of ‘degenerate matter’ that has never been observed—where atoms are squeezed together so strongly that only electrons in adjacent atoms prevent further collapse because they cannot share orbits. Just how far-fetched this notion is can be gauged if we consider that the electric repulsive force exceeds the gravitational force by 39 orders of magnitude!!


Subrahmanyan Chandrasekhar was awarded the Nobel Prize in 1983 for his theoretical work on electron degenerate white dwarfs, which predicted the existence of a relationship between mass and radius for a degenerate white dwarf. This theoretical mass-radius relation is a generally accepted underlying assumption in nearly all studies of white dwarf properties. In turn, these studies, including the white dwarf mass distribution and luminosity function, are foundations for such varied fields as stellar evolution and galactic formation. The notion of stellar collapse led on to more extreme theoretical fictions—neutron stars and black holes. The damage wrought by such an assumption for our understanding of stars and the cosmos cannot be overstated! A recent paper in The Astrophysical Journal warned, “One might assume that a theory as basic as stellar degeneracy rests on solid observational grounds, yet this is not the case. Comparison between observation and theory has shown disturbing discrepancies.” The paper cited here adds to the discrepancies. 

 
IMAGE
In summary: nearby red and white stars that appear faint are not different to other stars. Red dwarfs are physically much smaller than the Sun but their visible glow discharge is large and of low current density and energy (red). 
 

White ‘dwarfs,’ on the other hand, are physically larger than red dwarfs but generally smaller than the Sun. Lacking bright anode tufting they have an extended coronal type discharge and photosphere that emits faint whitish light, ultraviolet light and mild X-rays. The spectral lines are broadened, sometimes to the point of disappearance, due to the coronal electric field. This gives the misleading impression that hydrogen (whose spectral lines are smeared the most) is missing in many of these stars and that therefore they are remnants of larger stars that have lost or burned their hydrogen fuel.


Significantly, the larger the white dwarf, the lower the current density and the lower the apparent temperature. This trend has been noted with some puzzlement by researchers. White dwarfs the size of the Sun and a little larger are stars under lower electrical stress than normal. This may occur, for example, in binary star systems like that of Sirius, where one star usurps most of the available electrical energy.


There are no collapsed stars of extraordinary high density. The story of stellar evolution is fiction. The numbers of small red and white stars exceed the number of bright stars. They are formed in the same Z-pinch mechanism in dusty plasma as are all other stars. Or they may be born later by parturition (nova) of an unstable larger star. The economy and success of the Electric Universe model is readily apparent.

The Electric Universe paradigm continues its successful run of discovery and prediction in 2008

In January I declared 2008 The Year of the Electric Universe. And so it has proved to be. Confirming and supportive evidence arrives almost daily. Along with my associated THUNDERBOLTS.INFO website we attract tens of thousands of visitors each month. This month set a new record. The scientific literacy of visitors is exceptionally high, and a consistent pattern has emerged, verified by hundreds of comments. When newcomers compare the direct evidence for the Electric Universe to conventional interpretations of the same data, offered here and in Thunderbolts Picture of the Day,” the conclusion becomes clear. We do indeed live in an Electric Universe.


The Thunderbolts Project is attracting volunteers and people wanting to undertake serious study to further their understanding of plasma and the Electric Universe. New books, educational e-books and videos are being produced and a Japanese version of Thunderbolts of the Gods is due to go on sale in that country early in the new year.


The future is bright in an Electric Universe! 


 

 - Wal Thornhill   

From http://www.holoscience.com/news.php?article=b8zgwr0h  




For further enlightening info enter a word or phrase into the search box @  New Illuminati @  http://nexusilluminati.blogspot.com or click on any tag at the bottom of the page for more direct references

And see

The Her(m)etic Hermit - http://hermetic.blog.com





This material is published under Creative Commons Copyright (unless an individual item is declared otherwise by copyright holder) – reproduction for non-profit use is permitted & encouraged, if you give attribution to the work & author - and please include a (preferably active) link to the original along with this notice. Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution! If you like what you see, please send a tiny donation or leave a comment – and thanks for reading this far…

From the New Illuminati – http://nexusilluminati.blogspot.com