"All the World's a Stage We Pass Through" R. Ayana

Showing posts with label food. Show all posts
Showing posts with label food. Show all posts

Monday, 19 September 2016

Toxic Cookware Chemicals Have Polluted Drinking Water for Millions


Toxic Cookware Chemicals Have Polluted Drinking Water for Millions
Are you one of the idiots using poisonous cookware?

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhwpTp9rOyVA5tOLWIvcWf48__MOzI6benkNW-j4W9wI725hx-2kh7mAkphPfwxj0nJzzDZNm8ukY2k9ffJAuiXq5s-XDgk8tTTnR4ub3_IPpHy40SZqn0SdeSvvYLKZxfTQ4IEq9eH_GrA/s1600/Teflon-Ad.jpg




http://media.mercola.com/assets/images/freereports/nonstick-cookware-dangers-free-report.jpgAccording to a recent Harvard study, 16.5 million Americans have detectable levels of at least one kind of polyfluoroalkyl or perfluoroalkyl chemical (PFASs) in their drinking water. About 6 million Americans are drinking water that contains PFAS at or above the U.S. Environmental Protection Agency (EPA) safety level.1,2,3,4

These industrial chemicals have been linked to a number of health problems, from obesity and hormonal problems to impaired immune function5 and cancer, and the study’s authors warn that PFASs may contribute to illness even below the EPA’s safety level. Co-author Dr. Philippe Grandjean told the Charleston Gazette-Mail:6

“The EPA advisory limit … is much too high to protect us against toxic effects on the immune system. And the available water data only reveals the tip of the iceberg of contaminated drinking water.”

Recent research even suggests PFAS exposure may reduce effectiveness of vaccines in children by interfering with their immune function.7

PFASs Have Become Ubiquitous in the Environment

 

PFASs are used in many industrial applications calling for non-stick or slick surfaces, such as food packaging, stain- and water-resistant fabrics, non-stick cookware and firefighting foam. As reported by CNN:8

“As a result of their ubiquity, the chemicals migrate into air, household dust, food, soil and ground and surface water, and they eventually make their way into drinking water.

The problem with PFASs is that they remain in your body for a long time. Though other chemicals can be excreted within hours, it takes about 3.5 years for your body to get rid of just half of whatever amount you ingest …”

 

Do You Have Unsafe PFAS Levels in Your Drinking Water?

 


While toxic water supplies were found in 33 states, 75 percent of the samples with elevated PFAS came from 13 states: California, New Jersey, North Carolina, Alabama, Florida, Pennsylvania, Ohio, New York, Georgia, Minnesota, Arizona, Massachusetts and Illinois.

Not surprisingly, the highest concentration levels of PFAS were found in watersheds near industrial sites, military fire training areas and wastewater treatment plants. Private wells were also found to be contaminated. According to the authors:

“Among samples with detectable PFAS levels, each additional military site within a watershed’s eight-digit hydrologic unit is associated with a 20 [percent] increase in PFHxS, a 10 [percent] increase in both PFHpA and PFOA, and a 35 [percent] increase in PFOS.

The number of civilian airports with personnel trained in the use of aqueous film-forming foams is significantly associated with the detection of PFASs above the minimal reporting level.”

Toxic Tap Water

 

 

Many Americans Face Health Risks from Water Contaminants

 

 

As reported by CNN,9 more than 18 million Americans also receive drinking water from water treatment facilities that have violated federal drinking water rules for lead. And, in 9 out of 10 cases, the EPA has taken no enforcement action against the violators.

Disturbingly, many water treatment facilities are actually using incorrect testing methods to avoid detecting high levels of lead, which means the number of Americans drinking lead-contaminated water is likely even higher than that.

An estimated 16 million also have perchlorate — a chemical used in explosives and rocket fuel — in their drinking water.10

Just how severe water contamination may be remains an open question, as the Safe Drinking Water Act only regulates 91 contaminants. Meanwhile, more than 80,000 chemicals are used in the U.S.11 There’s really no telling how many of these chemicals, and in what amounts, end up in our drinking water.

 

Teflon Chemical Is Harmful at Minute Doses

 

 

One PFASs, perfluorooctanoic acid (PFOA, also known as C8), has been revealed to be far more dangerous than previously thought. For 50 years, DuPont used PFOA to make Teflon. Throughout that time, the company defended the safety of PFOA.

Despite the overwhelming evidence of harm, DuPont still to this day resists accountability for health problems resulting from PFOA exposure. However, the truth has finally become too obvious to ignore.

Last year, The Intercept blew the case open when it published a three-part exposé12titled “The Teflon Toxin: DuPont and the Chemistry of Deception,” detailing DuPont’s history of covering up the facts.

Earlier this year, The New York Times also published an in-depth exposé13 on the legal battle fought against DuPont for the past 15 years over PFOA contamination and its toxic effects.

According to a 2015 report14 by the Environmental Working Group (EWG), the EPA’s “safe” level of PFOA in drinking water is likely hundreds, perhaps even thousands, of times too high for safety:

“[T]wo leading environmental health scientists have published research with alarming implications … Their research finds that even very tiny concentrations of PFOA — below the reporting limit required by EPA’s tests of public water supplies — are harmful …

Since 2013, an EPA testing program has found PFOA in 94 public water systems in 27 states. These systems provide drinking water to more than 6.5 million people.

… [A]mong the samples with PFOA, statewide average levels ranged between five times and 175 times the level described by the new research as safe.”

 

Safety Level for PFAS Lowered, but May Still Not Be Low Enough

 


As a sign of progress, the EPA lowered the safety level for PFOA and perfluorooctanesulfonic acid (PFOS) from 0.4 parts per billion (ppb) to .07 ppb in May, 201615 (including a maximum combined level of .07 ppb if both chemicals are present).

The new standard takes into account lifetime exposure that would occur from drinking contaminated water.

Unfortunately, EPA data shows that water systems in 18 states are contaminated with PFOA and/or PFOS above the new federal threshold. Besides, even the new threshold may not be low enough to protect public health. According to the EWG, the safety level really should be 0.0003 ppb.

 

DuPont Faces Increasingly Serious Fallout from Its Teflon Products

 

 

PFOA is now the subject of about 3,500 personal injury claims against DuPont, four of which have already gone to court. One woman who developed kidney cancer after drinking PFOA-contaminated water was awarded $1.6 million in damages.16,17

These legal processes have uncovered internal documents showing DuPont was fully aware of the chemical’s danger to the public and employees, yet continued using it while hiding contamination problems.

In 2002, the EPA announced PFOA may pose a health risk to the general public both via contaminated water and Teflon cookware. DuPont’s own research shows that when its non-stick cookware is heated it breaks down to 15 toxic gases and particles, mostly fluorine-based.18,19

Three years later, in 2005, the EPA fined DuPont $16.5 million for violating the Toxic Substances Control Act by withholding decades’ worth of information about health hazards associated with PFOA.

That same year, a panel of scientists was convened to determine PFOA’s effect on human health. After seven years of research, the results of which are detailed in more than three dozen peer-reviewed papers, the C8 Science Panel linked PFOA to:20

  • Ulcerative colitis
  • High cholesterol
  • Pregnancy-induced hypertension
  • Thyroid disease
  • Testicular and kidney cancer

Its health effects were deemed to be widespread and occurred even at very low exposure levels. Now, residents of Hoosick Falls, New York — where a string of rare cancer deaths, thyroid disease and other health problems have occurred — are suing PFOA manufacturers for contaminating their local water supply.21

 

Hundreds of Scientists Issue Warning Over PFASs

 

 

It’s quite clear that the chemical industry cannot be trusted to regulate itself, and DuPont stands as a shining example of this. It can take decades before a dangerous chemical is recognized as such, and then the company can simply switch over to another untested, unregulated chemical, and the whack-a-mole game continues — all because chemicals do not have to be proven safe BEFORE they’re used.

In May 2015, more than 200 scientists from 40 countries signed the so-called Madrid Statement,22,23 which warns about the harms of all PFAS chemicals, both old and new. Documented health effects associated with the older, long-chain PFASs, including the following:24
Liver toxicity
Disruption of lipid metabolism, and the immune and endocrine systems
Adverse neurobehavioral effects
Neonatal toxicity and death
Tumors in multiple organ systems
Testicular and kidney cancers
Liver malfunction
Hypothyroidism
High cholesterol
Ulcerative colitis
Reduced birth weight and size
Obesity
Decreased immune response to vaccines
Reduced hormone levels and delayed puberty
The Statement also points out the problem with replacing PFASs known to be harmful with other similar, but less scientifically evaluated, compounds, saying:

“Although some of the long-chain PFASs are being regulated or phased out, the most common replacements are short-chain PFASs with similar structures, or compounds with fluorinated segments joined by ether linkages.

While some shorter-chain fluorinated alternatives seem to be less bioaccumulative, they are still as environmentally persistent as long-chain substances or have persistent degradation products. Thus, a switch to short-chain and other fluorinated alternatives may not reduce the amounts of PFASs in the environment. In addition, because some of the shorter-chain PFASs are less effective, larger quantities may be needed to provide the same performance.”

 

How to Avoid PFASs

 


According to the 1976 Toxic Sub­stances Control Act, the EPA can only test chemicals AFTER it has obtained evidence of harm. This arrangement is a prescription for disaster because it basically allows chemical companies to regulate themselves, and this is largely the reason why the EPA has restricted only five chemicals in the last four decades.

The Madrid Statement recommends avoiding any and all products containing, or manufactured using, PFASs, noting they include products that are stain-resistant, waterproof or non-stick. More helpful tips can be found in the EWG’s “Guide to Avoiding PFCS.”25Other suggestions that will help you avoid these dangerous chemicals include avoiding:
Items that have been pre-treated with stain-repellants, and opt out of such treatments when buying new furniture and carpets
Water- and/or stain-repellant clothing. One tipoff is when an item made with artificial fibers is described as “breathable.” These are typically treated with polytetrafluoroethylene (PTFE), a synthetic fluoropolymer
Items treated with flame retardant chemicals,26 which includes a wide variety of baby items, padded furniture, mattresses and pillows. Instead, opt for naturally less flammable materials such as leather, wool and cotton
Fast food and carry out foods, as the wrappers are typically treated with PFCs
Microwave popcorn. PFOA may not only present in the inner coating of the bag, it also may migrate to the oil from the packaging during heating. Instead, use “old-fashioned” stovetop popcorn
Non-stick cookware and other treated kitchen utensils. Healthier options include ceramic and enameled cast iron cookware, both of which are durable, easy to clean and completely inert, which means they won’t release any harmful chemicals into your home.

A newer type of non-stick cookware called Duralon uses a nonfluoridated nylon polymer for its non-stick coating. While this appears to be safe, your safest bet is still ceramic and enameled cast iron.

While some recommend using aluminum, stainless steel and copper cookware, I don’t for the following reasons: aluminum is a strongly suspected causal factor in Alzheimer’s disease, and stainless steel has alloys containing nickel, chromium, molybdenum and carbon.

For those with nickel allergies, this may be a particularly important consideration. Copper cookware is also not recommended because most copper pans come lined with other metals, creating the same concerns noted above. (Copper cookware must be lined due to the possibility of copper poisoning.)
Oral-B Glide floss and any other personal care products containing PTFE or “fluoro” or “perfluoro” ingredients. The EWG has an excellent database called Skin Deep27 you can peruse to find healthier options

 

At-Home Water Filtration Is a Must for Clean Pure Water



Unfortunately, your choices are limited when it comes to avoiding PFASs in drinking water. Either you must filter your water or obtain water from a clean source. Both solutions can be problematic and/or costly.

While many opt for bottled water, it’s important to realize that PFASs are not regulated in bottled water, so there’s absolutely no guarantee that it’ll be free of these or other chemicals. Bottled water also increases your risk of exposure to hazardous plastic chemicals such as bisphenol-A (BPA), which has its own set of health risks.

Most common water filters available in supermarkets will not remove PFASs. You really need a high-quality carbon filtration system. To be certain you’re getting the purest water you can, filter the water both at the point of entry and at the point of use. This means filtering all the water that comes into the house, and then filtering again at the kitchen sink and shower.

The New Jersey Drinking Water Quality Institute recommends using granulated activated carbon “or an equally efficient technology” to remove PFC chemicals such as PFOA and PFOS from your drinking water.28 Activated carbon has been shown to remove up to 90 percent of these chemicals.

One of the best filtration systems I’ve found so far is the Pure & Clear Whole House Water Filtration System, which uses a three-stage filtration process — a micron sediment pre-filter, a KDF water filter, and a high-grade carbon water filter.29

If you have been regularly exposed to PFASs by drinking municipal water, it would be wise to not only implement the above filtering recommendations to limit future toxic exposures but also consider a detox program. The likely most effective form would be to use infrared sauna with niacin as discussed in my interview with Dr. George Yu.

I personally do a version of this program three times a week in one of our infrared saunas — not only for PFASs but for all the other, nearly unavoidable exposures from living in contemporary society.




For more information about Teflon see http://nexusilluminati.blogspot.com/search/label/teflon  
- Scroll down through ‘Older Posts’ at the end of each section


Do you LIKE this uniquely informative site?
Hours of effort by a genuinely incapacitated invalid are required every day to maintain, write, edit, research, illustrate, moderate and publish this website from a tiny cabin in a remote forest.
Now that most people use ad blockers and view these posts on phones and other mobile devices, sites like this earn an ever shrinking pittance from advertising sponsorship. This site needs your help.
Like what you see? Please give anything you can -  
Contribute any amount and receive at least one New Illuminati eBook!
(You can use a card securely if you don’t use Paypal)
Please click below -



And it costs nothing to share this post on Social Media!
Dare to care and share - YOU are our only advertisement!


Images – https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhwpTp9rOyVA5tOLWIvcWf48__MOzI6benkNW-j4W9wI725hx-2kh7mAkphPfwxj0nJzzDZNm8ukY2k9ffJAuiXq5s-XDgk8tTTnR4ub3_IPpHy40SZqn0SdeSvvYLKZxfTQ4IEq9eH_GrA/s1600/Teflon-Ad.jpg
http://media.mercola.com/assets/images/freereports/nonstick-cookware-dangers-free-report.jpg
http://www.wakingtimes.com/wp-content/uploads/2016/09/Toxic-Tap-Water.jpg


For further enlightening information enter a word or phrase into the random synchronistic search box @ the top left of http://nexusilluminati.blogspot.com


And see


 New Illuminati on Facebook - https://www.facebook.com/the.new.illuminati

New Illuminati Youtube Channel -  https://www.youtube.com/user/newilluminati/playlists

New Illuminati’s OWN Youtube Videos -  
New Illuminati on Google+ @ For New Illuminati posts - https://plus.google.com/u/0/+RamAyana0/posts

New Illuminati on Twitter @ www.twitter.com/new_illuminati


New Illuminations –Art(icles) by R. Ayana @ http://newilluminations.blogspot.com

The Her(m)etic Hermit - http://hermetic.blog.com



DISGRUNTLED SITE ADMINS PLEASE NOTE –
We provide a live link to your original material on your site (and links via social networking services) - which raises your ranking on search engines and helps spread your info further!

This site is published under Creative Commons (Attribution) CopyRIGHT (unless an individual article or other item is declared otherwise by the copyright holder). Reproduction for non-profit use is permitted & encouraged - if you give attribution to the work & author and include all links in the original (along with this or a similar notice).

Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution!

If you like what you see, please send a donation (no amount is too small or too large) or leave a comment – and thanks for reading this far…

Live long and prosper! Together we can create the best of all possible worlds…


From the New Illuminati – http://nexusilluminati.blogspot.com

Thursday, 30 June 2016

Climate Change Ruins Food: Rising CO2 is reducing nutritional value of food, impacting ecosystems


Climate Change Ruins Food
Rising CO2 is reducing nutritional value of food, impacting ecosystems

Women harvest rice in Nepal. An estimated two billion people are already deficient in dietary zinc and iron, an aspect of malnutrition that has been termed “hidden hunger”. Some researchers think that shifts in nutritional content in major crops as a consequence of increasing atmospheric carbon dioxide could lead to more people being at risk of mineral deficiencies. Photo courtesy of the International Rice Research Institute on Flickr under a CC BY-NC-SA 2.0 license.



 Women harvest rice in Nepal. An estimated two billion people are already deficient in dietary zinc and iron, an aspect of malnutrition that has been termed “hidden hunger”. Some researchers think that shifts in nutritional content in major crops as a consequence of increasing atmospheric carbon dioxide could lead to more people being at risk of mineral deficiencies. 
Photo courtesy of the International Rice Research Institute on Flickr under a CC BY-NC-SA 2.0 license.




Heightened atmospheric CO2 levels are cutting the proportions of protein and other vital nutrients in plants, impacting crops, people, pollinators and ecosystems.


Rice fields in Kashmir, India. Staple crops such as rice and wheat are forecast to become less nutritious as a result of increasing carbon dioxide levels in the atmosphere. Photo courtesy of sandeepachetan.com travel photography on Flickr under CC BY-NC-ND 2.0 license
Rice fields in Kashmir, India. Staple crops such as rice and wheat are forecast to become less nutritious as a result of increasing carbon dioxide levels in the atmosphere. 
Photo courtesy of sandeepachetan.com travel photography on Flickr under CC BY-NC-ND 2.0 license


  • As CO2 levels rise, so do carbohydrates in plants, increasing food’s sugar content. While carbon-enriched plants grow bigger, scientists are finding that they contain proportionately less protein and nutrients such as zinc, magnesium and calcium.
  • A meta-analysis of 7,761 observations of 130 plant species found that overall mineral concentrations in plants declined by about 8 percent in response to elevated CO2 levels — 25 minerals decreased, including iron, zinc, potassium and magnesium.
  • New research found that as atmospheric CO2 rose from preindustrial to near current levels, the protein content in goldenrod pollen fell by 30 percent. Bees and other pollinators rely heavily on goldenrod as protein-rich food for overwintering. The loss of pollinators could devastate many of the world’s food crops.
  • Research into the correlation between CO2 concentrations and the nutrient content of food is in its early stages. More study is urgently needed to determine how crops and ecosystems will be altered as fossil fuels are burned, plus mitigation strategies.


Among the myriad impacts climate change is having on the world, one in particular may come as a surprise: heightened atmospheric CO2 levels might be adversely affecting the nutritional quality of the food you eat. As carbon dioxide in the atmosphere continues to increase, you could end up eating more sugar and less of important minerals such as zinc, magnesium and calcium — without even realizing it. Those effects could also be reverberating up the food chain and altering ecosystems in as yet poorly understood ways.

For plants, a rise in atmospheric carbon dioxide actually boosts productivity by stimulating photosynthesis. They make more carbohydrate and grow larger — seemingly a good thing. But because other nutrients don’t increase and can’t keep pace with the augmented carbohydrate, this potential boon to our food supply isn’t all that it seems: plants end up having a higher carbohydrate to protein ratio, and relatively lower concentrations of minerals.

Put simply: atmospheric carbon dioxide acts as a sort of fertilizer to grow bigger, leafier plants, but those larger broccolis and lettuces actually contain less nutritional value per portion than their predecessors grown in the preindustrial, pre-fossil fuel world.

And that could be a problem for the world’s already malnourished people, for bees seeking protein-rich pollen so they can safely overwinter, and for ecosystems that could be thrown out of balance by changes in plant nutrition.

The human implications of these ongoing changes to our food supply came under the spotlight in April when the US Global Change Research Program (USGCRP) published a major report on the impact of climate change on human health. One of its key findings was that rising carbon dioxide will reduce the nutritional quality of food.

Allison Crimmins, of the US Environmental Protection Agency, and a lead author of the food safety chapter in the USGCRP report, told Mongabay about some of the ways in which this is likely to be felt around the world: “In certain developing countries, reduced nutritional value of foods will aggravate existing protein deficiencies, particularly in children. In the US and other developed countries however, dietary protein deficiencies are uncommon. In those cases, an increased ratio of carbohydrates and fewer essential minerals — essentially more starchy and more sugary foods — could potentially contribute to or exacerbate existing chronic dietary deficiencies or obesity risks, though how big a role this impact would play on a person’s overall nutrition remains uncertain.”


Deciphering the CO2 / plant nutrition relationship


In a 2014 study that informed the USGCRP report, researcher Irakli Loladze, of the Bryan College of Health Sciences, described the projected increase in dietary starch and carbohydrate as comparable to adding a “spoonful of sugars” to each 100 grams (3.5 ounces) of dry plant matter. When we’re being told not to eat more than a few teaspoons-worth of sugar per day, this sounds like a lot.

What will be the consequences, Loladze asks, if this additional sugar intake is unavoidable and lifelong? How, for example, might that extra daily suger exacerbate the health problems of the 25 million Americans, 98.4 million Chinese, and 65 million Indians who are part of the growing global diabetes epidemic? And how might those health impacts escalate as atmospheric carbon levels rise annually through the 21st century?

Loladze’s meta-study — which examined thousands of observations of plants grown under high carbon dioxide conditions — was an attempt to prove a theoretical prediction he made back in 2002. We’ve known for decades that plants grown under high carbon dioxide conditions have reduced protein concentrations, and the mechanism behind that change is fairly well understood: more carbohydrate dilutes the protein within the leaf. In addition, increased CO2 changes the rate of transpiration — the uptake of water through the roots and evaporation through the leaves — and affects the amount of nutrients plants draw from the soil. However, higher rates of photosynthesis have different effects on different minerals.


Wheat. Carbon dioxide promotes plant growth by boosting photosynthesis and carbohydrate production in the plant. But other nutrients don’t keep pace with this increase, resulting in higher carbohydrate to protein ratios, and lower concentrations of minerals. These shifts in nutritional quality could have implications for human health around the world. Photo courtesy of Žarko Å uÅ¡njar on Flickr, under a CC BY-SA 2.0 license
Wheat. Carbon dioxide promotes plant growth by boosting photosynthesis and carbohydrate production in the plant. But other nutrients don’t keep pace with this increase, resulting in higher carbohydrate to protein ratios, and lower concentrations of minerals. These shifts in nutritional quality could have implications for human health around the world. Photo courtesy of Žarko Å uÅ¡njar on Flickr, under a CC BY-SA 2.0 license


A theory known as ecological stoichiometry — which examines the balance of chemical elements in living systems — led Loladze to reason that minerals should also be affected by a proportional increase in carbohydrate synthesis and the associated knock-on effects this has on plant metabolism. But although a few studies supported his hypothesis in the early 2000s, the evidence was limited.

“There was considerable opposition to my idea,” Loladze told Mongabay. “The stoichiometric theory [upon which I based my argument] was not well known back then. Being a mathematician, I was viewed by some plant experts as an outsider with simplistic arguments that would not pan out in the real world.”

No one would fund the large-scale research effort Loladze needed to investigate his prediction further. Lacking backing and unemployed, he remained determined to test his theory with data. “With no money and no academic affiliation, the only way to get data was to compile [findings] from the existing literature,” he said.

Meanwhile, scientists around the world were increasingly studying the CO2 nutrient effects that interested Loladze, but their results were perplexing: while increases in atmospheric carbon decreased plant mineral concentrations in some studies, minerals increased in others, or showed no significant change

Loladze combined the data from numerous studies — that together had highly variable results — into one large meta-analysis, and he found a clear signal in the noise. A decade after he began work, he proved his prediction to be correct: when he collated the results of 7,761 observations of 130 plant species, he found that overall mineral concentrations in plant tissues declined by around 8 percent in response to elevated carbon dioxide levels. In all, 25 minerals were found to decrease, including iron, zinc, potassium and magnesium.


Tussock moth caterpillars feeding on leaves. Plants and the insects that feed on them form the basis of most terrestrial ecosystems, so nutritional shifts caused by rising atmospheric carbon dioxide levels will likely have impacts that extend up the food chain, but as ecosystems are so complex, it’s difficult to predict exactly how those changes will play out over time. Photo courtesy of Bjorn Watland on Flickr under a CC BY-SA 2.0 license
Tussock moth caterpillars feeding on leaves. Plants and the insects that feed on them form the basis of most terrestrial ecosystems, so nutritional shifts caused by rising atmospheric carbon dioxide levels will likely have impacts that extend up the food chain, but as ecosystems are so complex, it’s difficult to predict exactly how those changes will play out over time. Photo courtesy of Bjorn Watland on Flickr under a CC BY-SA 2.0 license


“One important aspect of Loladze’s study is its emphasis on trace elements, like zinc,” James Elser, of Arizona State University, and a proponent of the ecological stoichiometry theory on which Loladze based his work, told Mongabay. “These are often neglected in considerations of plant nutrition but agronomists and others are increasingly aware of the importance of these trace elements [not only] in limiting crop production, but also in human health and are now provisioning them in fertilizers.”

At the same time Loladze was looking at all available data on the nutrient responses of plants, Samuel Myers of Harvard University was also trying to pinpoint the impact of carbon dioxide on plant mineral content.

Whereas Loladze included data on wild as well as food crop species, and non-edible tissues as well as edible, Myers focused specifically on zinc and iron in six food crops. His research team grew the crops under different atmospheric CO2 conditions, and found a similar pattern: both zinc and iron declined by about 5-10 percent in wheat, rice, soybeans, and field peas when grown in a high carbon dioxide setting.


On the trail of trace elements and “hidden hunger”


Although a more consistent picture is now emerging of what happens to plant nutrients as carbon dioxide levels rise, it’s still not clear exactly how serious a problem this will be for people’s health.

Minor changes in mineral concentrations are unlikely to affect people already consuming more than sufficient quantities for good health, like many in the industrialized world. And if edible plants grow larger under higher carbon dioxide, then simply eating more may compensate for the reduced mineral concentration, though this could have consequences in terms of extra calories consumed.


Goldenrod in Virginia, USA. This is an essential late season source of food for bees, but a recent study found that with rising carbon dioxide levels, the nutritional quality of its pollen is decreasing. This could affect bee survival over the winter. Pollinators such as bees play a crucial part in our food supply. Photo courtesy of Bridget Leyendecker on Flickr under a CC BY 2.0 license.Goldenrod in Virginia, USA. This is an essential late season source of food for bees, but a recent study found that with rising carbon dioxide levels, the nutritional quality of its pollen is decreasing. This could affect bee survival over the winter. Pollinators such as bees play a crucial part in our food supply. Photo courtesy of Bridget Leyendecker on Flickr under a CC BY 2.0 license.


This picture changes markedly in the developing world. Deficiencies in micronutrients are globally common there, with an estimated 2 billion people lacking in dietary zinc and iron — a serious problem long recognized by the United Nations. As the USGCRP report stated, “Globally, chronic dietary deficiencies of micronutrients such as vitamin A, iron, iodine, and zinc contribute to “hidden hunger,” in which the consequences of the micronutrient insufficiency may not be immediate­ly visible or easily observed. This type of micro­nutrient deficiency constitutes one of the world’s leading health risk factors and adversely affects metabolism, the immune system, cognitive devel­opment and maturation — particularly in children.” The report also noted that around 40 percent of people in the US are likely consuming less than the average daily requirement of calcium and magnesium.

Given the current prevalence of “hidden hunger” some experts expect that rising CO2 levels and corresponding declines in plant nutrition could have a major impact on the health of those already suffering from, or at risk of, malnutrition — with developing nations in Africa and Asia likely to be the hardest hit.

But more research is needed to quantify potential impacts. Studies such as those done by Loladze and Myers have so far only looked at the plants themselves, and not the food products that arise from them, cautions Elser. This “doesn’t necessarily represent the nutritional contents of the foods at the point of consumption, once they have been processed and prepared. So, the ultimate nutritional impact of the CO2 effect requires more investigation.”

“I agree that the conclusions in both [studies] are somewhat alarming, but they should be taken for what they are — just a couple of papers making estimations of potential impact that need to be verified by agroecology, climate, types of foods, etc,” Patrick Webb, Professor of Nutrition at Tufts University, told Mongabay. “And remember that over the [20th century] time-frames the [studies] refer to, there is a rapid expansion of bio-fortified cropping (non-GMO) and a surge in processed food consumption globally, much of which is micrononutrient fortified. I only say this to point out that these papers don’t lead to a conclusion that ‘we’re going to run out of nutrients!’ Simply, that we need to be wary of these kinds of potentially negative impacts of GHGs [greenhouse gases] even on our food supply, and such impacts are bound to be greater in some places than others.”


Native bees, wasps, butterflies, moths, flies and other wild pollinators are vital to the world’s agriculture and to ecosystems. No one knows for certain how rising carbon dioxide levels and corresponding falling protein levels in plants will impact these species long term. Image by Edward Sanders courtesy of the Biodiversity Heritage LibraryNative bees, wasps, butterflies, moths, flies and other wild pollinators are vital to the world’s agriculture and to ecosystems. No one knows for certain how rising carbon dioxide levels and corresponding falling protein and mineral levels in plants will impact these species long term. Image by Edward Sanders courtesy of the Biodiversity Heritage Library


“[T]he issues are being discussed among international agriculture researchers, certainly,” continued Webb, who is also Director for USAID’s Feed the Future Nutrition Innovation Lab. “The challenge… is to document the pace of change [in plant nutritional value] for different regions of the world, for different kinds of crops. Only then will we know what kinds of policy changes need to be [put] in place to respond to what is happening (or not happening) at a scale significant enough to warrant action.”

Last year Myers and his colleagues looked at what projected declines in crop zinc content could mean for people in 188 countries. They found that under predicted increases in atmospheric carbon dioxide, 138 million more people would be at risk of zinc deficiency by 2050, largely concentrated in Africa and South Asia.

“The effect we have identified highlights an issue of social justice,” Myers and his co-authors wrote. “The wealthy world’s CO2 emissions are putting the poor in harm’s way.”

While the problem can theoretically be solved by identifying the regions and populations most at risk from hidden hunger, and then focusing mitigations such as mineral fortification programs there, logistical hurdles will likely prevent fortified foods from reaching everyone who need them, now and into the future, Loladze points out in his 2014 paper. Another option is to explore crop cultivars for selective breeding that may be less susceptible to nutrient declines under higher carbon dioxide levels.

Loladze also urges more research, asserting that a greater understanding of exactly how nutrient declines occur could be an important step in responding to their effects. “Elucidating the relative role of each mechanism — dilution [of nutrients] by carbohydrates, reduced transpiration, altered demands for nutrients and so on — and linking them to genomic changes will help us to develop mitigation strategies.”


Food chain and ecosystem changes


While the full impact on human health of hidden hunger is still being investigated, we’re not the only ones likely to be affected: as plants form the basis of most terrestrial ecosystems “changes in plant based nutrition will extend up to all feeding organisms as part of the food chain,” Lewis Ziska of the US Department of Agriculture told Mongabay.

“Generally this means that the vegetation [in a CO2 enriched environment] is of poorer quality for the animals consuming it — insect herbivores, deer, etc,” Elser explained. “However, this is not necessarily always the case. For example, lower nitrogen content in grass [a consequence of the carbohydrate dilution effect] has been shown to favor the success of locusts.”


A worker bee in a honeycomb. The serious decline of protein in goldenrod, an important fall crop that sustains North American bees through the winter, could be harming these pollinators, but more study is needed to separate out this particular dietary stressor from other major stressors including chemical pesticide use. How CO2 levels are impacting other pollen-providing plants and pollinators around the world has not been studied. Photo by Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license
A worker bee in a honeycomb. The serious decline of protein in goldenrod, an important fall crop that sustains North American bees through the winter, could be harming these pollinators, but more study is needed to separate out this particular dietary stressor from other major stressors including chemical pesticide use. How CO2 levels are impacting other pollen-providing plants and pollinators around the world has not been studied. Photo by Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license


Studies have shown that some insect herbivores can compensate for the less nutrient rich plants found in high CO2 environments by eating more, but their growth, development, and reproduction can be affected, Loladze said. Crop damage may also be higher if insects need to consume greater plant quantities to survive. Some laboratory studies have shown that even with compensatory feeding to make up for deficiencies, insects are more likely to starve to death, or could end up consuming damaging quantities of toxic compounds. In the wild, generalist species may respond by switching plant hosts, and over time evolutionary responses could be expected too.

Another ecosystem outcome is the lower nutrient content found in dead leaves, Elser added. “This can slow down the cycling of nutrients in soil and thus impact subsequent productivity of the grassland or forest.”

Research just published by Ziska and his colleagues illustrates another important way CO2 induced nutritional changes are likely impacting wild ecosystems and human food crops. His team examined Smithsonian National Museum specimens of the flowering plant goldenrod collected between 1824 and 2014, to see how pollen quality changed as atmospheric carbon dioxide levels rose — they saw a high correlation. As carbon dioxide concentrations rose from preindustrial levels of 280 parts per million to near current levels of 398 parts per million, the protein content in the most recent pollen samples fell by 30 percent. The greatest protein drop was seen between 1960 and 2014, when atmospheric CO2 levels rose most dramatically.


US Department of Agriculture Agricultural Research Service entomologist Dr. Jeff Pettis examines a bee colony in McFarland, CA in 2014. Bees are one of nature’s many pollinators and are crucial to the production for fruits and vegetables —including apples, squash and almonds. Honeybees are responsible for pollinating approximately $15 billion worth of US crops annually. Their disappearance would have massive repercussions for our food supply. Photo by David Kosling / USDA.
US Department of Agriculture Agricultural Research Service entomologist Dr. Jeff Pettis examines a bee colony in McFarland, CA in 2014. Bees are one of nature’s many pollinators and are crucial to the production for fruits and vegetables —including apples, squash and almonds. Honeybees are responsible for pollinating approximately $15 billion worth of US crops annually. Their disappearance would have massive repercussions for our food supply. Photo by David Kosling / USDA.


The team also ran a two-year experiment that grew goldenrod under an equivalent range of carbon dioxide concentrations, as well as at levels that are predicted for the coming decades. They observed similar protein declines.

Myers described these findings as “really fascinating,” and explained their significance: “This is important because goldenrod is one of the most ubiquitous late-blooming plants that provides fodder for bees before they overwinter.” Ziska and colleagues say that goldenrod is recognized as being “essential to native bee and honey bee health and winter survival”.

Not only is this likely to directly impact bee populations, “It is reasonable in the case of pollinators to suggest that reduced nutrition will increase vulnerability to other stressors; these other stressors could include things like neonics [pesticides] and/or invasives such as Varroa destructor [parasitic mites],” Ziska said. The loss of pollinators worldwide would drastically impact the many insect pollinated foods we enjoy today ranging from apples to oranges, almonds to cashews, cabbages to broccoli, coffee to tomatoes and blueberries.

“We are starting to design some experiments to see what these changes in protein content might mean for bee behavior and their effectiveness as pollinators,” Myers said. Research Myers and colleagues published last year quantified the role that pollinators play in ensuring human health via food nutrition. Their study concluded that without pollinators as many as 1.4 million additional people would die each year due to non-communicable diseases and micronutrient deficiencies.


The urgent need for research


The complexity of natural systems, and the numerous confounding factors that affect human health and animal health, make it difficult to foresee exactly how CO2 impacts on the food chain will play out for people or ecosystems. Mitigation strategies may be successful to a degree, once we know what we’re up against. Even better would be to rapidly cut fossil fuel emissions, making sure that long-term carbon dioxide increase predictions don’t materialize.

“The impact on the nutrition of our food is a direct effect of rising greenhouse gas emissions, so it is vital that we reduce these emissions,” Crimmins said. “Taking action on climate change now and reducing the world’s greenhouse gas emissions is not just an environmental imperative; it is crucial for protecting public health.”

“Bottom line is that humanity is operating like a monkey in a rocket ship,” Myers concluded. “We used to be passengers with all the other living creatures on the planet but we have climbed up into the cockpit and taken control. Now we are pushing buttons and flipping levers and rapidly changing most of the biophysical conditions on the planet with really very little idea what the consequences will be for our own health and wellbeing or that of the rest of the biosphere. Undoubtedly, there will be many more surprises along the way.”


A dwarf honey bee (Apis florea). The study of the impacts of carbon dioxide levels on plant nutrition has barely begun to be studied. As CO2 levels rise we are moving into uncharted territory. Photo by Gideon Pisanty (Gidip) licensed under the Creative Commons Attribution 3.0 Unported license


A dwarf honey bee (Apis florea). The impacts of carbon dioxide levels on plant nutrition has barely begun to be studied. As CO2 levels rise we are moving into uncharted territory. Photo by Gideon Pisanty (Gidip) licensed under the Creative Commons Attribution 3.0 Unported license




Citations


DeLucia, E.H., Nabity, P.D., Zavala, J.A., and Berenbaum, M.R. (2012) Climate Change: Resetting Plant-Insect Interactions. Plant Physiology 160: 1677-1685
Loladze, I. (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology and Evolution 17: 457-461
Loladze, I. (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245. DOI: 10.7554/eLife.02245
Müller, C., Elliott, J., and Levermann, A. (2014) Fertilizing hidden hunger. Nature Climate Change 4: 540-541
Myers, S.S., Zanobetti, A., Kloog, I. et.al. (2014). Increasing CO2 threatens human nutrition. Nature 510: 139-142
Myers, S.S., Wessells, K.R., Kloog, I., Zanobetti, A., and Schwartz, J. (2015) Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. Lancet Global Health 3: e639-e645
Smith, M.R., Singh, G.M., Mozaffarian, D., and Myers, S.S. (2015) Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. The Lancet 386: 1964-1972
Ziska, L., Crimmins, A., Auclair, A., DeGrasse, S., Garofalo, J.F., Khan, A.S., Loladze, I., Pérez de León, A.A., A. Showler, J. Thurston, and I. Walls, (2016) Ch. 7: Food Safety, Nutrition, and Distribution. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. U.S. Global Change Research Program, Washington, DC, 189–216. http://dx.doi.org/10.7930/J0ZP4417
Ziska, L.H., Pettis, J.S., Edwards, J., Hancock, J.E., Tomecek, M.B., Clark, A., Dukes, J.S., Loladze, I. and Polley, H.W. (2016) Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc. R. Soc. B. 283: 20160414
Article published by Glenn Scherer




For more information about climate change see http://nexusilluminati.blogspot.com/search/label/climate%20change  
- Scroll down through ‘Older Posts’ at the end of each section


Do you LIKE this uniquely informative site?
Hours of effort by a genuinely incapacitated invalid are required every day to maintain, write, edit, research, illustrate, moderate and publish this website from a tiny cabin in a remote forest.
Now that most people use ad blockers and view these posts on phones and other mobile devices, sites like this earn an ever shrinking pittance from advertising sponsorship. This site needs your help.
Like what you see? Please give anything you can -  
Contribute any amount and receive at least one New Illuminati eBook!
(You can use a card securely if you don’t use Paypal)
Please click below -




Spare Bitcoin change?


And it costs nothing to share this post on Social Media!
Dare to care and share - YOU are our only advertisement!



For further enlightening information enter a word or phrase into the random synchronistic search box @ the top left of http://nexusilluminati.blogspot.com


And see


 New Illuminati on Facebook - https://www.facebook.com/the.new.illuminati

New Illuminati Youtube Channel -  https://www.youtube.com/user/newilluminati/playlists

New Illuminati’s OWN Youtube Videos -  
New Illuminati on Google+ @ For New Illuminati posts - https://plus.google.com/u/0/+RamAyana0/posts

New Illuminati on Twitter @ www.twitter.com/new_illuminati


New Illuminations –Art(icles) by R. Ayana @ http://newilluminations.blogspot.com

The Her(m)etic Hermit - http://hermetic.blog.com



DISGRUNTLED SITE ADMINS PLEASE NOTE –
We provide a live link to your original material on your site (and links via social networking services) - which raises your ranking on search engines and helps spread your info further!

This site is published under Creative Commons (Attribution) CopyRIGHT (unless an individual article or other item is declared otherwise by the copyright holder). Reproduction for non-profit use is permitted & encouraged - if you give attribution to the work & author and include all links in the original (along with this or a similar notice).

Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution!

If you like what you see, please send a donation (no amount is too small or too large) or leave a comment – and thanks for reading this far…

Live long and prosper! Together we can create the best of all possible worlds…


From the New Illuminati – http://nexusilluminati.blogspot.com