"All the World's a Stage We Pass Through" R. Ayana

Tuesday 6 March 2012

Could the desert sun power the world?

Could the desert sun power the world?
Green electricity generated by Sahara solar panels is being hailed as a solution to the climate change crisis


Power station at Kuraymat
The power station at Kuraymat uses both natural gas and solar panels to produce electricity. Photograph: Solar Millennium

During the summer of 1913, in a field just south of Cairo on the eastern bank of the Nile, an American engineer called Frank Shuman stood before a gathering of Egypt's colonial elite, including the British consul-general Lord Kitchener, and switched on his new invention. Gallons of water soon spilled from a pump, saturating the soil by his feet. Behind him stood row upon row of curved mirrors held aloft on metal cradles, each directed towards the fierce sun overhead. As the sun's rays hit the mirrors, they were reflected towards a thin glass pipe containing water.

The now super-heated water turned to steam, resulting in enough pressure to drive the pumps used to irrigate the surrounding fields where Egypt's lucrative cotton crop was grown. It was an invention, claimed Shuman, which could help Egypt become far less reliant on the coal being imported at great expense from Britain's mines.

"The human race must finally utilise direct sun power or revert to barbarism," wrote Shuman in a letter to Scientific American magazine the following year. But the outbreak of the first world war just a few months later abruptly ended his dream and his solar troughs were soon broken up for scrap, with the metal being used for the war effort. Barbarism, it seemed, had prevailed.

Almost a century later, a convoy of air-conditioned coaches sweeps through the affluent suburb of Maadi – where Shuman had demonstrated his fledgling solar panels – continuing south for 90km towards Kuraymat, an area of flat, uninhabited desert near the city of Beni Suef. The high-level international delegation of CEOs, politicians, financiers and scientists has come to visit a brand new "hybrid" power station that uses both natural gas and solar panels to generate electricity. Before the coaches reach the facility's security gates, its 6,000 parabolic troughs – each six metres tall with a combined surface area of 130,000sq metres – are already visible from the perimeter road. Even though the panels account for just one seventh of the power plant's 150MW generating capacity, the Egyptian government, which has been pushing to develop the site since 1997, hopes to prove to the delegation that it is the desert sun – not fossil fuels, such as gas, coal and oil – that should be used not only to generate far more of the electricity across the Middle East and North Africa (Mena), but, crucially, for neighbouring Europe, too.

Gerhard Knies, a German particle physicist, was the first person to estimate how much solar energy was required to meet humanity's demand for electricity. In 1986, in direct response to the Chernobyl nuclear accident, he scribbled down some figures and arrived at the following remarkable conclusion: in just six hours, the world's deserts receive more energy from the sun than humans consume in a year. If even a tiny fraction of this energy could be harnessed – an area of Saharan desert the size of Wales could, in theory, power the whole of Europe – Knies believed we could move beyond dirty and dangerous fuels for ever. Echoing Schuman's own frustrations, Knies later asked whether "we are really, as a species, so stupid" not to make better use of this resource. Over the next two decades, he worked – often alone – to drive this idea into public consciousness.

The culmination of his efforts is "Desertec", a largely German-led initiative that aims to provide 15% of Europe's electricity by 2050 through a vast network of solar and wind farms stretching right across the Mena region and connecting to continental Europe via special high voltage, direct current transmission cables, which lose only around 3% of the electricity they carry per 1,000km. The tentative total cost of building the project has been estimated at 400bn (£342bn).

Until now, Desertec has been seen by many observers as little more than a mirage in the sand; the fanciful plan of well-meaning dreamers. After all, the technical, political, security and financial hurdles can, each on their own, appear to be utterly insurmountable. But over the past two years, the initiative has received significant support from some of the biggest corporate names in Germany, a country that already leads Europe when it comes to adopting and developing renewable energy, particularly solar. In the autumn of 2009, an "international" consortium of companies formed the Desertec Industrial Initiative (Dii) with weighty companies, such as E.ON, Munich Re, Siemens and Deutsche Bank, all signing up as "shareholders".

Germany's announcement earlier this year that, in the wake of the Fukushima disaster, it was to speed up its total phase-out of nuclear power suddenly pulled the Desertec idea into much sharper focus. Coupled with faltering international negotiations and increasingly dire warnings on climate change – just last month the International Energy Agency warned that the world is headed for irreversible climate change if it doesn't start reducing carbon emissions within five years – it would seem the time is now right for an idea of such scale and ambition.

Last month, at its annual conference in Cairo, Dii confirmed to the world that the first phase of the Desertec plan is set to begin in Morocco next year with the construction of a 500MW solar farm near to the desert city of Ouarzazate. The 12sq km project would act as a "reference project" that, much like Egypt's own project at Kuraymat, would help convince both investors and politicians that similar farms could be repeated across the Mena region in the coming years and decades.

"It's all systems go in Morocco," announced Paul van Son, Dii's CEO, to the visiting delegates. Talks, he added, were – given their shared close proximity, along with Morocco, to western Europe's grid – already under way with Tunisia and Algeria about joining the "first phase" of Desertec. Countries such as Egypt, Syria, Libya and Saudi Arabia would be expected to join in the "scale-up" phase from 2020 onwards, once extra transmission cables were laid across the Mediterranean and via Turkey, with the whole venture becoming financially self-sustaining by 2035.

Van Son swats away any talk that the Desertec project is built on a precarious foundation of presumption, naivety and hope. "Yes, the current global financial crisis has clearly not been very helpful, but everyone also realises that being dependent on fossil fuels creates vulnerability," he says.

He also rejects any notion that Desertec carries with it even a whiff of neo-colonialism. Earlier this year such sentiments were raised by Daniel Ayuk Mbi Egbe of the African Network for Solar Energy. "Many Africans are sceptical [about Desertec]," he said. "[Europeans] make promises, but at the end of the day, they bring their engineers, they bring their equipment, and they go. It's a new form of resource exploitation, just like in the past." Other Mena-based speakers made similar points, not least that any electricity generated will first be desperately needed by local populations as they fight poverty.

"When the idea for Desertec was first announced there was anger and irritation from the Arab League," admits Van Son. "They didn't understand it at first, but we explained that it would benefit their members, too. We explained it would be a cooperative process and they became more relaxed. It's a win-win for all, we stressed. The relationship is all positive now."

Desertec should also be supported, argue its champions, because it will improve energy security by helping to diversify supply. At present, says Van Son, Europeans are vulnerable to the so-called "energy weapon", namely, when an energy-rich country holds its neighbours to ransom by restricting or denying supply. Think Russia and its gas, he says. Or a terrorist attack on an oil pipeline. Desertec will help to dilute these threats.

He is bemused, though, that the current domination of Dii by German companies should rouse suspicion. (There was not a single political or corporate representative from the UK at the conference, yet at least half hailed from Germany.) "Yes, the initiative came from Germany. But there are 15 different nationalities involved, including companies such as HSBC and Morgan Stanley. This is just the start."

A common question at the conference is: "Who is going to pay for Desertec?" There is talk of loans from development institutions such as the World Bank (the route being taken by Morocco). The presence of German banks suggests they are considering being key lenders, too. But there is also the implication that much of the burden will fall on the European taxpayer, either through EU subsidies, or tariffs added to their energy bills.

Angelika Niebler, a Christian Democrat MEP from Germany, travelled to Cairo as a member of the European parliament's energy committee. She says it is "too early" to talk about EU financing but adds: "Energy is going to be a bigger priority for the EU in coming years than agriculture has been in the past and Desertec will surely feature."

Hans Josef-Fell, a representative of Germany's Green party, is also in Cairo for the conference. "There is a fear in Germany that paying for green electricity direct from North Africa will be too heavy a burden on our consumers," he says. Germany already has among the highest electricity prices in Europe, in part because of a huge wave of renewable energy installations across the country.

Europe, particularly Germany, seems to increasingly know what it wants from Desertec. But what of its Mena partners? Obaïd Amrane, a board member of the Moroccan Agency for Solar Energy, the government body responsible for overseeing Desertec's first plant, says his country has its own plans for the electricity generated at the facility – and for the other four that will follow by 2020 – and it doesn't necessarily include selling it to Europe.

"By 2020, we are expecting a doubling of electricity consumption in Morocco, as the population and standard of living grow," he says. "At the moment, we are 97% dependent on foreign energy which is becoming increasingly unsustainable. But we are now aiming to have 42% capacity of renewable electricity by 2020. We will build extra capacity beyond what Morocco needs if someone wants us to, but we will need a big share of the electricity produced by these projects."

Such sentiments propose another challenge for Desertec: how will it guarantee that the electricity Europe needs is sent down the transmission cables and not just all consumed locally? And how will Mena countries justify selling the electricity to Europe – where the retail price of electricity can be up to 20 times more expensive – if the local population is, say, experiencing regular blackouts?

At the visitor centre at Kuraymat, bottles of chilled water are being distributed ahead of a tour of the parabolic troughs. The mid-morning November sun is already heating the engine oil-like fluid inside the troughs' receiver tubes – a technology not that far removed from Shuman's century-old design – up towards 400C.

The technical questions are coming thick and fast for Bodo Becker, the operations manager at Flagsol, the German company that specialises in building concentrated solar power (CSP) plants in the deserts of the US, Spain and now Egypt. The leading query is how the troughs perform in such harsh conditions.

"We only have one sandstorm, on average, pass through here each year," he says, "but we tilt the troughs down and away from the wind whenever it gets up beyond 12 metres per second, as they act like giant sails."

Keeping them clean is the main challenge, he adds. "Due to the dusty conditions, we are witnessing about 2% degradation every day in performance, so we need to clean them daily. We use about 39 cubic metres of demineralised water each day for cleaning across the whole site."

This surprises many delegates, as they have previously been told at the conference that CSP troughs need cleaning weekly compared to photovoltaic panels which need cleaning monthly. Either way, it highlights yet another challenge for Desertec: can enough local water ever be secured for cleaning duties? The Nile is just a few miles from Kuraymat, but some countries aim to push much deeper into their deserts to build such facilities. "Dry cleaning" technologies are being developed, but they reduce the generating efficiency at the plant. Either way, the super-heated transfer fluid requires cooling before it can loop back to the troughs for re-use, and, as with cleaning, water is the cheapest and easiest way to do this. Until "dry cooling" technologies are further advanced, it could limit solar farms to the desert fringes close to large bodies of water.

Somewhat counter-intuitively, some countries, such as Jordan, now favour wind over solar as a source of desert energy, because it is currently more affordable and isn't so water-intensive. But it is suspected that it will be many years before a single desert energy technology comes to dominate the market. Some within the industry advocate photovoltaic panels, but, currently, CSP is more popular. However, even within CSP, there are loyalists for parabolic troughs and others for "solar towers", which rely on hundreds of pivoting mirrors laid out on the ground to track the sun and direct its rays towards one fixed point at the top of a giant tower.

Whichever technology succeeds, it is already clear which nation in particular will win out as Desertec develops in the coming decades. One member of the visiting delegation asks Becker where the troughs are made.

"The metal cradles were made here in Egypt, but the glass troughs were all made in Germany," he says. "And only two companies in the world make the glass tube receivers, which is where the main intellectual property of this technology lays – Schott Solar and Siemens." Both companies are German.

Morocco to host first solar farm in 400bn renewables network
The vast solar and windfarm project across North Africa and the Middle East may provide 15% of Europe's electricity by 2050

Parobolic mirrors at a solar thermal plant are used to heat oil

Morocco has been chosen as the first location for a project to build a vast network of solar and windfarms. Photograph: Michael Melford/NGS/Corbis

Morocco has been chosen as the first location for a German-led, 400bn project to build a vast network of solar and windfarms across North Africa and the Middle East to provide 15% of Europe's electricity supply by 2050.

The Desertec Industrial Initiative (DII), a coalition of companies including E.ON, Siemens, Munich Re and Deutsche Bank, announced at its annual conference being held in Cairo on Wednesday that "all systems are go in Morocco", with construction of the first phase of a 500MW solar farm scheduled to start next year. The precise location of the 2bn plant is yet to be finalised, but it is expected to be built near the desert city of Ouarzazate. It will use parabolic mirrors to generate heat for conventional steam turbines, as opposed to the photovoltaic cells used in the UK.

The 12 square kilometre Moroccan solar farm will, said Paul van Son, Dii's chief executive, be a "reference project" to prove to investors and policy makers in both Europe and the Middle East/North Africa (MENA) region that the Desertec vision is not a dream-like mirage, but one that can be a major source of renewable electricity in the decades ahead.

Van Son described Desertec as a "win-win" for both Europe and MENA, adding that the Arab spring had created both opportunities and "questions" for the ambitious project. Discussions are already underway with the Tunisian government about building a solar farm, he said, and Algeria is the next "obvious" country, due to its close proximity to western Europe's grid. Countries such as Libya, Egypt, Turkey, Syria and Saudi Arabia are predicted to start joining the network from 2020, as a network of high voltage direct current cables are built and extended across the wider region.

German companies and policymakers have dominated the Dii conference, reflecting the nation's recent decision to totally phase out nuclear power by 2022 in reaction, in part, to the Fukushima nuclear disaster in Japan in March. By comparison, not a single representative from the UK was at the conference.

Jochen Homann, the state secretary at Germany's Federal Ministry for Economics and Technology, told the conference: "We undertook major reforms in German energy policy this summer and Desertec opens up an opportunity for us. We want to enter the age of renewables with sustainable sources of electricity supplying 80% of our power generation by 2050. As we accelerate our phase-out of nuclear power, we need to safeguard an affordable supply of electricity and we will be interested in importing renewables supplies in the future. Germany's government will continue to support Desertec. It is an inspiring vision which is good for foreign, climate and economic policies."

But Homann stressed there would be "pre-conditions" for guaranteeing long-term support from the Germany government. He said there must be "liberalisation" of the energy markets across the MENA region: "North Africa still provides huge subsidies for fossil fuels. There will need to be regulatory improvements. Only then will renewables be able to compete and a common market created. And other European states must participate, too."

Hassan Younes, Egypt's minister of electricity and energy, told the conference that Egypt was keen to participate and that it hoped to have a 1,000MW windfarm built by 2016 in the Gulf of Suez, adding to the 150MW "hybrid" gas-solar power plant that opened 100km south of Cairo earlier this year.

The conference was told via a Dii promotional video that the network of solar and windfarms across the MENA region would help to "halt migration" into Europe, by fast-tracking the rise of the region's youthful population out of poverty and unemployment.

The Desertec plan was welcomed by many in Germany, including chancellor Angela Merkel. However, some German critics argued that the concept of transmitting solar power from Africa to Europe was not proven and that a billion dollar project does not fit in to the country's green energy plan.

German development NGO Germanwatch raised concerns that local people should benefit from the scheme, though Desertec representatives said the energy generated will first be used by the people of north Africa before being exported. Andree Böhling, energy expert at Greenpeace Germany, said: "We have to avoid European companies getting their hands on local resources, therefore we will follow the project carefully."

• This article was amended on 3 November to remove an incorrect reference to Germanwatch and neocolonialism

From The Guardian @ http://www.guardian.co.uk/environment/2011/dec/11/sahara-solar-panels-green-electricity?cat=environment&type=article and http://www.guardian.co.uk/environment/2011/nov/02/morocco-solar-farm-renewables

Please Help Keep This Unique Site Online
Donate any amount and receive at least one New Illuminati eBook!

For further enlightening information enter a word or phrase into the search box @  New Illuminati or click on any label/tag at the bottom of the pagehttp://nexusilluminati.blogspot.com

And see

The Her(m)etic Hermit - http://hermetic.blog.com

This material is published under Creative Commons Fair Use Copyright (unless an individual item is declared otherwise by copyright holder) – reproduction for non-profit use is permitted & encouraged, if you give attribution to the work & author - and please include a (preferably active) link to the original along with this notice. Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution! If you like what you see, please send a tiny donation or leave a comment – and thanks for reading this far…

From the New Illuminati – http://nexusilluminati.blogspot.com


  1. This is brilliant. Thank you for your elaborate post. I really enjoy reading it.

  2. Is it good to produce electricity in Desert with solar system in Pakistan Thar Desert have lot of coal in which Dr. samar is working to produce energy.

    1. Coal is death Joseph. Don't trust any docturd who promotes it. See: Inflatable Solar Canopy to Power the Arabian Peninsula? MIT student Otto Ng proposes to solar-power the Arabian peninsula with more than 10,000 square kilometers of Powerscape – a tensile solar-collecting canopy comprised of inflatable mirr

      ors. The problem with solar power, says Ng in a TED presentation, is the great amount of space required to produce the same amount of energy as a conventional power plant.

      So, unless we’re making beautiful power stations a la the Land Art Generator Initiative, we’re sapping up precious land with ugly, resource-intensive solar collectors du jour. Ng proposes instead to cover the desert with an energy-generating canopy that also provides shade and a comfortable microclimate.


      Powerscape is a programmable tensile canopy made of heliostat balloons and cable net mesh. It can trace the sun’s movement through the sky and even changes color throughout the day to deflect harsh sunlight.

      At night, the canopy will be so transparent that stars will be visible through it.

      The integrated mirrors concentrate sunlight onto a stirling dish that converts heat to energy, though Ng doesn’t provide any estimates on how much energy a square meter of canopy will produce, nor does he predict how the efficiency of his technology compares to existing solar-collectors.

      He does point out, however, that within the next forty years, crude oil production will shrink to one-third of current levels, which could potentially cripple oil-dependent economies in the Middle East, not to mention global oil supplies.

      cleantech, solar power, desert, Arabian Peninsula, solar canopy, Powerscape, Otto NgDesert agriculture

      Powerscapes can bridge the energy gap, although not without biological, geological and meteorological consequences.

      Still, as climate change escalates in the next few decades as a result of our failure to stem fossil fuel production and subsequent greenhouse gas emissions, temperatures in the desert will become even more fierce.

      Solar-harvesting Powerscapes could mitigate resulting discomfort by providing huge swaths of shade that will in turn promote desert agriculture and livestock production. He even proposes to combine the canopies with German technology called Watergy to create closed-loop greenhouses, promoting greater food security in the desert.

      Could this technology stem the rise of African land grabs?

      There are numerous pitfalls associated with this novel idea.

      First of all, it would cost a fortune to create this infrastructure in the desert and it would be very difficult to maintain. Although it will require fewer natural resources than conventional solar power plants, covering the Arabian Peninsula with a giant canopy would comprise a mammoth undertaking.

      Still, we wouldn’t be surprised to see wealthy Gulf nations taking up the cause in order to compete with the North African countries that have joined the Desertec initiative and maintain their energy-rich lifestyle.
      @ http://www.greenprophet.com/2012/09/inflatable-solar-canopy-arabian-peninsula/

  3. I do agree with you "new illuminati" but look at energy crises in the world after utilizing our max resources we have to move at any other and i think coal is one of best after oil and gas.
    top mountain peaks
    Tear Lake

  4. Last year i got cheap umrah packages i realised that the temperature of desert are very hot and yes it can give the energy which is called solar system.

  5. Dr OBUDU have been a great doctor even know in the world, am here today to tell the world my testimony about how i was cured from herpes.i was having this deadly disease called herpes in my body for the past 6 years but now i know longer have it again. i never know that this disease have cure not until i meet someone know to the world called Dr OBUDU he cured me from herpes he have been great to me and will also be great to you too. i have work with other doctor but nothing come out. one day i did a research and came across the testimony of a lady that also have same disease and got cured by Dr OBUDU. then i contacted his email and told him my problem.he told me not to worry that he have the cure i didn't believe him when he said so because my doctor told me there is no cure.he told me i need to get a herbal medicine for the cure which i did and now am totally cured you can also be cured of any other diseases too if only you believe in him. contact him via email OBUDU.MIRACLEHERBALHOME@GMAIL.COM you can also call or whatsapp him true his mobile number +2347035974895

  6. It is a very good article! True that Solar Energy is really getting more and more widely used and encouraged these years.


Add your perspective to the conscious collective