What's wrong with the sun?
by Stuart Clark
SUNSPOTS come and go, but recently  they have mostly gone. For centuries, astronomers have recorded when  these dark blemishes on the solar surface emerge, only for them to fade  away again after a few days, weeks or months. Thanks to their efforts,  we know that sunspot numbers ebb and flow in cycles lasting about 11  years.
But  for the past two years, the sunspots have mostly been missing. Their  absence, the most prolonged for nearly a hundred years, has taken even  seasoned sun watchers by surprise. "This is solar behaviour we haven't  seen in living memory," says David Hathaway, a physicist at NASA's  Marshall Space Flight Center in Huntsville, Alabama.
The  sun is under scrutiny as never before thanks to an armada of space  telescopes. The results they beam back are portraying our nearest star,  and its influence on Earth, in a new light. Sunspots and other clues  indicate that the sun's magnetic activity is diminishing, and that the  sun may even be shrinking. Together the results hint that something  profound is happening inside the sun. The big question is what?
The  stakes have never been higher. Groups of sunspots forewarn of gigantic  solar storms that can unleash a billion times more energy than an atomic  bomb. Fears that these giant solar eruptions could create havoc on Earth,  and disputes over the sun's role in climate change, are adding urgency  to these studies. When NASA and the European Space Agency launched the Solar and Heliospheric Observatory almost 15 years ago, "understanding the solar cycle  was not one of its scientific objectives", says Bernhard Fleck, the  mission's project scientist. "Now it is one of the key questions."
Sun behaving badly
Sunspots are windows into the sun's magnetic soul.  They form where giant loops of magnetism, generated deep inside the  sun, well up and burst through the surface, leading to a localised drop  in temperature which we see as a dark patch. Any changes in sunspot  numbers reflect changes inside the sun. "During this transition, the sun  is giving us a real glimpse into its interior," says Hathaway.
When  sunspot numbers drop at the end of each 11-year cycle, solar storms die  down and all becomes much calmer. This "solar minimum" doesn't last  long. Within a year, the spots and storms begin to build towards a new  crescendo, the next solar maximum.
What's  special about this latest dip is that the sun is having trouble  starting the next solar cycle. The sun began to calm down in late 2007,  so no one expected many sunspots in 2008. But computer models predicted  that when the spots did return, they would do so in force. Hathaway was  reported as thinking the next solar cycle would be a "doozy": more  sunspots, more solar storms and more energy blasted into space. Others predicted that it would be the most active solar cycle on record. 
The trouble was, no one told the sun.
The trouble was, no one told the sun.
The  first sign that the prediction was wrong came when 2008 turned out to  be even calmer than expected. That year, the sun was spot-free 73 per  cent of the time, an extreme dip even for a solar minimum. Only the  minimum of 1913 was more pronounced, with 85 per cent of that year  clear.
As  2009 arrived, solar physicists looked for some action. They didn't get  it. The sun continued to languish until mid-December, when the largest  group of sunspots to emerge for several years appeared. Finally, a  return to normal? Not really.
Even  with the solar cycle finally under way again, the number of sunspots  has so far been well below expectations. Something appears to have  changed inside the sun, something the models did not predict. But what?
The  flood of observations from space and ground-based telescopes suggests  that the answer lies in the behaviour of two vast conveyor belts of gas  that endlessly cycle material and magnetism through the sun's interior  and out across the surface. On average it takes 40 years for the  conveyor belts to complete a circuit (see diagram).
When  Hathaway's team looked over the observations to find out where their  models had gone wrong, they noticed that the conveyor-belt flows of gas  across the sun's surface have been speeding up since 2004.
The  circulation deep within the sun tells a different story. Rachel Howe  and Frank Hill of the National Solar Observatory in Tucson,  Arizona,  have used observations of surface disturbances, caused by the solar  equivalent of seismic waves, to infer what conditions are like within  the sun. Analysing data from 2009, they found that while the surface  flows had sped up, the internal ones had slowed to a crawl.
These  findings have thrown our best computer models of the sun into disarray.  "It is certainly challenging our theories," says Hathaway, "but that's  kinda nice."
It  is not just our understanding of the sun that stands to benefit from  this work. The extent to which changes in the sun's activity can affect  our climate is of paramount concern. It is also highly controversial.  There are those who seek to prove that the solar variability is the  major cause of climate change, an idea that would let humans and their  greenhouse gases off the hook. Others are equally evangelical in their  assertions that the sun plays only a minuscule role in climate change.
If  this dispute could be resolved by an experiment, the obvious strategy  would be to see what happens when you switch off one potential cause of  climate change and leave the other alone. The extended collapse in solar  activity these past two years may be precisely the right sort of test,  in that it has significantly changed the amount of solar radiation  bombarding our planet. "As a natural experiment, this is the very best  thing to happen," says Joanna Haigh, a climatologist at Imperial College  London. "Now we have to see how the Earth responds."
The climate link
Mike Lockwood at the University of Reading, UK, may already have identified one response - the unusually frigid European winter of 2009/10. He has studied records covering data stretching back to 1650, and found that severe European winters are much more likely during periods of low solar activity (New Scientist, 17 April, p 6).  This fits an emerging picture of solar activity giving rise to a small  change in the global climate overall, yet large regional effects.
Another  example is the Maunder minimum, the period from 1645 to 1715 during  which sunspots virtually disappeared and solar activity plummeted. If a  similar spell of solar inactivity were to begin now and continue until  2100, it would mitigate any temperature rise through global warming by 0.3 °C on average, according to calculations by Georg Feulner and Stefan Rahmstorf  of the Potsdam Institute for Climate Impact Research in Germany.  However, something amplified the impact of the Maunder minimum on  northern Europe, ushering in a period known as the Little Ice Age, when  colder than average winters became more prevalent and the average  temperature in Europe appeared to drop by between 1 and 2 °C.
A  corresponding boost appears to be associated with peaks in solar  output. In 2008, Judith Lean of the Naval Research Laboratory in  Washington DC published a study showing that high solar activity has a  disproportionate warming influence on northern Europe (Geophysical Research Letters, vol 35, p L18701).
So  why does solar activity have these effects? Modellers may already be  onto the answer. Since 2003, spaceborne instruments have been measuring  the intensity of the sun's output at various wavelengths and looking for  correlations with solar activity. The results point to the sun's  emissions of ultraviolet light. "The ultraviolet is varying much, much,  much more than we expected," says Lockwood.
Ultraviolet  light is strongly linked to solar activity: solar flares shine brightly  in the ultraviolet, and it helps carry the explosive energy of the  flares away into space. It could be particularly significant for the  Earth's climate as ultraviolet light is absorbed by the ozone layer in  the stratosphere, the region of atmosphere that sits directly above the  weather-bearing troposphere.
More  ultraviolet light reaching the stratosphere means more ozone is formed.  And more ozone leads to the stratosphere absorbing more ultraviolet  light. So in times of heightened solar activity, the stratosphere heats  up and this influences the winds in that layer. "The heat input into the  stratosphere is much more variable than we thought," says Lockwood.
Enhanced  heating of the stratosphere could be behind the heightened effects felt  by Europe of changes in solar activity. Back in 1996, Haigh showed that  the temperature of the stratosphere influences the passage of the jet  stream, the high-altitude river of air passing from west to east across  Europe.
Lockwood's  latest study shows that when solar activity is low, the jet stream  becomes liable to break up into giant meanders that block warm westerly  winds from reaching Europe, allowing Arctic winds from Siberia to  dominate Europe's weather.
The  lesson for climate research is clear. "There are so many weather  stations in Europe that, if we are not careful, these solar effects  could influence our global averages," says Lockwood. In other words, our  understanding of global climate change could be skewed by not taking  into account solar effects on European weather.
Just  as one mystery begins to clear, another beckons. Since its launch 15  years ago, the SOHO spacecraft has watched two solar minimums, one  complete solar cycle, and parts of two other cycles - the one that ended  in 1996 and the one that is just stirring. For all that time its VIRGO instrument  has been measuring the total solar irradiance (TSI), the energy emitted  by the sun. Its measurements can be stitched together with results from  earlier missions to provide a 30-year record of the sun's energy  output. What this shows is that during the latest solar minimum, the  sun's output was 0.015 per cent lower than during the previous lull. It  might not sound like much, but it is a hugely significant result.
We used to think that the sun's output was unwavering. That view began to change following the launch in 1980 of NASA's Solar Maximum Mission.  Its observations show that the amount of energy the sun puts out varies  by around 0.1 per cent over a period of days or weeks over a solar  cycle.
Shrinking star
Despite this variation, the TSI has dipped  to the same level during the three previous solar minima. Not so during  this recent elongated minimum. Although the observed drop is small, the  fact that it has happened at all is unprecedented. "This is the first  time we have measured a long-term trend in the total solar irradiance,"  says Claus Fröhlich of the World Radiation Centre in Davos,  Switzerland, and lead investigator for the VIRGO instrument.
If  the sun's energy output is changing, then its temperature must be  fluctuating too. While solar flares can heat up the gas at the surface,  changes in the sun's core would have a more important influence on  temperature, though calculations show it can take hundreds of thousands  of years for the effects to percolate out to the surface. Whatever the  mechanism, the cooler the surface, the less energy there is to "puff up"  the sun. The upshot of any dip in the sun's output is that the sun  should also be shrinking.
Observations suggest that it is - though we needn't fear a catastrophe like that depicted in the movie Sunshine  just yet. Back in the 17th century French astronomer Jean Picard made  his mark by measuring the sun's diameter. His observations were carried  out during the Maunder minimum, and he obtained a result larger than  modern measurements. Was this simply because of an error on Picard's  part, or could the sun genuinely have shrunk since then? "There has been  a lot of animated discussion, and the problem is not yet solved," says  Gérard Thuillier of the Pierre and Marie Curie University in Paris,   France.
Any dip in the sun's output means that the sun is shrinking. Observations suggest that it is, though they are controversial.
 
Observations  with ground-based telescopes are not precise enough to resolve the  question, due to the distorting effect of Earth's atmosphere. So the  French space agency has designed a mission, aptly named Picard, to return precise measurements of the sun's diameter and look for changes.
Frustratingly  the launch, on a Russian Dnepr rocket, is mired in a political  disagreement between Russia and neighbouring Kazakhstan. Until the  dispute is resolved, the spacecraft must wait. Every day of delay means  valuable data being missed as the sun takes steps, however faltering,  into the next cycle of activity. "We need to launch now," says  Thuillier.
What  the sun will do next is beyond our ability to predict. Most astronomers  think that the solar cycle will proceed, but at significantly depressed  levels of activity similar to those last seen in the 19th century.  However, there is also evidence that the sun is inexorably losing its  ability to produce sunspots (see "The sunspot forecast"). By 2015, they could be gone altogether, plunging us into a new Maunder minimum - and perhaps a new Little Ice Age.
Of  course, solar activity is just one natural source of climate  variability. Volcanic eruptions are another, spewing gas and dust into  the atmosphere. Nevertheless, it remains crucial to understand the  precise changeability of the sun, and the way it influences the various  regional patterns of weather on Earth. Climate scientists will then be  able to correct for these effects, not just in interpreting modern  measurements but also when attempting to reconstruct the climate  stretching back centuries. It is only by doing so that we can reach an  unassailable consensus about the sun's true level of influence on the  Earth and its climate.
The sunspot forecast
Although sunspots are making a belated comeback after the protracted solar minimum, the signs are that all is not well. For decades, William Livingston at the National Solar Observatory in Tucson, Arizona, has been measuring the strength of the magnetic fields which puncture the sun's surface and cause the spots to develop. Last year, he and colleague Matt Penn pointed out that the average strength of sunspot magnetic fields has been sliding dramatically since 1995.
If the trend continues, in just five years the field will have slipped below the threshold magnetic field needed for sunspots to form.
How likely is this to happen? Mike Lockwood at the University of Reading, UK, has scoured historical data to look for similar periods of solar inactivity, which show up as increases in the occurrence of certain isotopes in ice cores and tree rings. He found 24 such instances in the last few thousand years. On two of those occasions, sunspots all but disappeared for decades. Lockwood puts the chance of this happening now at just 8 per cent.
Only on one occasion did the sunspot number bounce back to record levels. In the majority of cases, the sun continued producing spots albeit at significantly depressed levels. It seems that the sunspot bonanza of last century is over.
Stuart Clark's latest book is The Sun Kings (Princeton). He blogs at stuartclark.com
From New Scientist Magazine issue 2764. & http://www.newscientist.com/article/mg20627640.800-whats-wrong-with-the-sun.html?full=true  

Xtra Images - http://www.nationalforestlawblog.com/sunspots.jpg
 http://i.dailymail.co.uk/i/pix/2009/04/21/article-1172399-04944753000005DC-421_468x380.jpg
http://spiff.rit.edu/classes/phys230/lectures/sun_gross/spot_uv.jpg 
- Scroll down through ‘Older Posts’ at the end of each section
Hope you like this
not for profit site -
It takes hours of work every day by
a genuinely incapacitated invalid to maintain, write, edit, research,
illustrate and publish this website from a tiny cabin in a remote forest 
Like what we do? Please give anything
you can -  
Contribute any amount and receive at
least one New Illuminati eBook!
(You can use a card
securely if you don’t use Paypal)
Please click below -
For further enlightening information
enter a word or phrase into the random synchronistic search box @ the top left
of http://nexusilluminati.blogspot.com 
And see
 New Illuminati – http://nexusilluminati.blogspot.com
 New Illuminati on Facebook - https://www.facebook.com/the.new.illuminati
New Illuminati Youtube Channel - http://www.youtube.com/user/newilluminati/feed
New Illuminati on Google+ @ https://plus.google.com/115562482213600937809/posts
New Illuminati on Twitter @ www.twitter.com/new_illuminati
New Illuminations –Art(icles) by
R. Ayana @ http://newilluminations.blogspot.com
The Her(m)etic Hermit - http://hermetic.blog.com
The Prince of Centraxis - http://centraxis.blogspot.com (Be
Aware! This link leads to implicate & xplicit concepts & images!)
DISGRUNTLED SITE ADMINS PLEASE NOTE – 
We provide a live link to your original material on your site (and
links via social networking services) - which raises your ranking on search
engines and helps spread your info further! This site is published
under Creative Commons Fair Use Copyright (unless an individual article or
other item is declared otherwise by the copyright holder). Reproduction for non-profit use is permitted & encouraged, 
- if you give attribution to the work & author. Please include a
(preferably active) link to the original (along with this or a similar notice).
Feel free to make non-commercial hard (printed) or software copies or
mirror sites - you never know how long something will stay glued to the web –
but remember attribution! 
If you like what you see, please send a donation (no amount is too
small or too large) or leave a comment – and thanks for reading this far…
Live long and prosper! Together we can create the best of all possible
worlds…
From the New Illuminati – http://nexusilluminati.blogspot.com


"What's wrong with the sun?" Not a damn thing, the question that might be more appropriate is, what's wrong with your easily repudiated opinion about the sun!
ReplyDeleteBald assertions backed up by nothing are even easier it seems. Please repudiate New Scientist's opinions about the Sun - if it's so easy, please provide a link that illuminates - like THIS for instance; The Dimming Sun and the Coming Ice Age @ http://nexusilluminati.blogspot.com/2015/03/the-dimming-sun-and-coming-ice-age.html
Delete